Higher Technological Institute
Civil Engineering Department

Lectures of
Fluid Mechanics
Dr. Amir M. Mobasher
Fluid concept

- **Fluid mechanics** is a division in applied mechanics related to the behaviour of liquid or gas which is either in rest or in motion.

- The study related to a fluid in rest or stationary is referred to *fluid static*, otherwise it is referred to as *fluid dynamic*.

- **Fluid** can be defined as a substance which *can deform continuously when being subjected to shear stress at any magnitude*. In other words, it can flow continuously as a result of shearing action. This includes any liquid or gas.
Fluid concept

- Thus, with exception to solids, any other matters can be categorised as fluid.
- Examples of typical fluid used in engineering applications are water, oil and air.

Units and Dimensions

1st Dimensions

<table>
<thead>
<tr>
<th>Mass</th>
<th>Length</th>
<th>Time</th>
<th>Force</th>
</tr>
</thead>
<tbody>
<tr>
<td>M</td>
<td>L</td>
<td>T</td>
<td>F</td>
</tr>
</tbody>
</table>

Types of systems

i- M – L – T system
ii- F – L – T system

Force = Mass * Acceleration
Units and Dimensions

2nd Units

<table>
<thead>
<tr>
<th>System / Quantity</th>
<th>Mass</th>
<th>Length</th>
<th>Time</th>
<th>Force</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard International (S.I)</td>
<td>kg</td>
<td>m</td>
<td>sec</td>
<td>N</td>
</tr>
<tr>
<td>French System (c.g.s.)</td>
<td>gm</td>
<td>cm</td>
<td>sec</td>
<td>dyne</td>
</tr>
<tr>
<td>British (English)</td>
<td>slug</td>
<td>ft</td>
<td>sec</td>
<td>lb</td>
</tr>
<tr>
<td>Kilogram weight system</td>
<td>kg</td>
<td>m</td>
<td>sec</td>
<td>kg_w</td>
</tr>
</tbody>
</table>

1- **Length (l)**

<table>
<thead>
<tr>
<th>Conversion</th>
<th>Unit</th>
<th>Equivalent</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 ft</td>
<td>12 inch</td>
<td></td>
</tr>
<tr>
<td>1 inch</td>
<td>2.54 cm</td>
<td></td>
</tr>
</tbody>
</table>

Example:

\[
1 \text{ ft} = 12 \times 2.54 = 30.48 \text{ cm} \\
1 \text{ ft} = 0.3048 \text{ m}
\]

yard = 3 ft \quad m = 100 \text{ cm}
mile = 1760 yard \quad ' \rightarrow \text{ feet}, \quad " \rightarrow \text{ inch}
mile = 1760 \times 3 \times 0.3048

\[
1 \text{ m} = \frac{1}{0.3048} \text{ ft} = 3.28 \text{ ft}
\]
Units and Dimensions

2 - Mass \((m)\)

\[
1 \text{ slug} = 14.59 \text{ Kg} \\
1 \text{ ton} = 1000 \text{ Kg} \\
1 \text{ Kg} = 1000 \text{ gm}
\]

3 - Volume \((V)\)

\[
1 \text{ m}^3 = 1000 \text{ litre} = 10^6 \text{ cm}^3 \\
1 \text{ gallon} = 3.785 \text{ litre}
\]

4 - Velocity \((v)\)

\[
V = \frac{\text{length}}{\text{time}} = LT^{-1} \quad \text{or} \quad \text{ft/sec}
\]

5 - Acceleration \((a)\)

\[
a = \frac{\text{velocity}}{\text{time}} = \frac{dV}{dt} = LT^{-2}
\]

Dr. Amir Mobasher

Units and Dimensions

6 - Gravitational acceleration \((g)\)

\[
9 = 9.81 \text{ m/sec}^2 \\
9 = 32.2 \text{ ft/sec}^2
\]

7 - Force \((F)\)

\[
F = \text{mass} \ast \text{acceleration} = \text{MLT}^{-2}
\]

\[
N = \text{Kg.m/sec}^2 \\
\text{dyne} = \text{g.m.cm/sec}^2 \\
1 \text{lb} = \text{slug.ft/sec}^2 \\
1 N = 10^5 \text{ dyne}
\]

\[
1 \text{kg} = 9.81 N \\
1 \text{gm} = 9.81 \text{ dyne} \\
1 \text{lb} = 4.44 N \\
1 \text{kg} = 2.205 \text{ lb}
\]

Dr. Amir Mobasher
Units and Dimensions

8 - Density (ρ)

$$\rho = \frac{\text{Mass}}{\text{Volume}} = \frac{m}{V} = ML^{-3}$$

$1 \text{ gm/cm}^3 = 1000 \text{ Kg/m}^3 = 1.94 \text{ slug/ft}^3$

Density of water

<table>
<thead>
<tr>
<th>System</th>
<th>SI</th>
<th>C.G.S.</th>
<th>English</th>
</tr>
</thead>
<tbody>
<tr>
<td>ρ_w</td>
<td>1000 Kg/m^3</td>
<td>1 gm/cm^3</td>
<td>1.94 slug/ft^3</td>
</tr>
</tbody>
</table>

Dr. Amir Mobasher

Units and Dimensions

9 - Specific Weight (γ)

$$\gamma = \frac{\text{Weight}}{\text{Volume}} = \frac{W}{V} = \frac{F}{V}L^{-3} = ML^{-2}T^{-2}$$

$$\gamma = \rho g$$

Specific weight of water

<table>
<thead>
<tr>
<th>System</th>
<th>SI</th>
<th>C.G.S.</th>
<th>English</th>
</tr>
</thead>
<tbody>
<tr>
<td>γ_w</td>
<td>9810 N/m^3</td>
<td>981 dyne/cm^2</td>
<td>62.4 lb/ft^3</td>
</tr>
</tbody>
</table>

Dr. Amir Mobasher
Units and Dimensions

10 - Specific Volume \(\frac{1}{\rho} = \ M^{-1}L^3 \)

11 - Specific Gravity (S.G.) = Relative density (r.d.)
\[S.G = r.d = \frac{\rho_{\text{liquid}}}{\rho_{\text{water}}} = \frac{\gamma_{\text{liquid}}}{\gamma_{\text{water}}} \] (no units)

\[\text{e.g.} \]
\[S.G \ of \ Hg = 13.6 \]
\[\gamma_{Hg} = 13.6 \gamma_{water} \]

\[13.6 \times 9810 \] SI

\[13.6 \times 62.4 \] English

Dr. Amir Mobasher

Units and Dimensions

12 - Pressure (P) = Stress (T)
\[P = \tau = \frac{\text{Force}}{\text{Area}} = \rho gh = FL^{-2} = ML^{-1}T^{-2} \]

Pa (Pascal) = \(N/m^2 \)
Psi = pounds per square inch (lb/inch^2)
Psf = pounds per square foot (lb/ft^2)

\[\text{e.g.} \]
\[\text{Convert} \ 1 \text{Psi} \rightarrow \text{Psf} \]
\[\therefore 1 \text{ft} = 12 \text{inch} \]
\[\therefore P = 1 \frac{\text{lb}}{\text{inch}^2} \times (12)^2 \frac{\text{inch}^2}{\text{ft}^2} = 144 \frac{\text{lb}}{\text{ft}^2} \]
\[1 \text{Psi} = 144 \text{ Psf} \]

Dr. Amir Mobasher
Units and Dimensions

13 - \(\text{Discharge (Q)}\)

\[Q = \frac{\text{Volume}}{\text{time}} = \frac{V}{t} = \text{Velocity} \times \text{Area} = V \cdot A = L^3 \cdot T^{-1} \]

\(1 \text{ m}^3/\text{sec} = 10^6 \text{ cm}^3/\text{sec}\)

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Commonly used dimensions</th>
<th>BG (English) Units</th>
<th>SI units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acceleration (a)</td>
<td>LT(^2)</td>
<td>ft/sec(^2)</td>
<td>m/s(^2)</td>
</tr>
<tr>
<td>Force (F)</td>
<td>F or MLT(^2)</td>
<td>lb (slug ft/sec(^2))</td>
<td>N (kg m/s(^2))</td>
</tr>
<tr>
<td>Area (A)</td>
<td>L(^2)</td>
<td>ft(^2)</td>
<td>m(^2)</td>
</tr>
<tr>
<td>Density ((\rho))</td>
<td>ML(^{-3})</td>
<td>slug/ft(^3)</td>
<td>kg/m(^3)</td>
</tr>
<tr>
<td>Energy, work or quantity of heat</td>
<td>FL</td>
<td>ft lb</td>
<td>N \cdot m = Joule (J)</td>
</tr>
<tr>
<td>Flowrate (Q)</td>
<td>L(^3)T(^{-1})</td>
<td>ft(^3)/sec (cfs)</td>
<td>Hz (hertz, s(^{-1}))</td>
</tr>
<tr>
<td>Frequency</td>
<td>T(^{-1})</td>
<td>cycle/sec (sec(^{-1}))</td>
<td>m/s(^3)</td>
</tr>
<tr>
<td>Kinematic viscosity ((\nu))</td>
<td>L(^{-1})T(^{-1})</td>
<td>ft(^2)/sec</td>
<td>N \cdot m/s = Watt (W)</td>
</tr>
<tr>
<td>Power</td>
<td>FLT(^{-1})</td>
<td>lb in(^2)/(psi)</td>
<td>N/m(^2) = Pascal (Pa)</td>
</tr>
<tr>
<td>Pressure (p)</td>
<td>FL (^{-2})</td>
<td>lb/ft(^2) (pcf)</td>
<td>N/m(^3)</td>
</tr>
<tr>
<td>Specific weight ((\gamma))</td>
<td>FL (^{-3})</td>
<td>ft/sec (fps)</td>
<td>m/s</td>
</tr>
<tr>
<td>Velocity (V)</td>
<td>LT(^{-1})</td>
<td>lb sec/ft(^2)</td>
<td>N/s/m(^2)</td>
</tr>
<tr>
<td>Viscosity ((\mu))</td>
<td>FTL(^{-2})</td>
<td>ft(^3)</td>
<td>m(^3)</td>
</tr>
<tr>
<td>Volume (V)</td>
<td>L(^3)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Units and Dimensions

14 - Momentum = mass * velocity = force * time

15 - Energy (E) = Work = Torque (T) = Moment

Work = Force * distance = F * L = ML^2 T^{-2}

Joule = N.m

16 - No of revolutions (N) = (n) Speed of Rotation

N = no. of revolutions/minute (r.p.m.)

n = no. of revolutions/second (r.p.s)

Units and Dimensions

17 - Angular Velocity (ω)

ω = \frac{θ}{t} = \frac{2\pi N}{60} = 2\pi n \text{ rad/sec}

V = ωr \text{ m/sec or ft/sec}

18 - Power (P)

P = Force * Velocity = FLT^{-1} = ML^2 T^{-3}

Watt = N.m/sec

HP = Horsepower = Watt / 735

Dr. Amir Mobasher
Fluids Properties

- Surface tension (σ)

Surface tension (σ): A liquid’s ability to resist tension

- Capillarity

\[\sigma (\pi d) \cos \theta = \frac{\pi d^2}{4} h \gamma \]

\[h = \frac{4 \sigma \cos \theta}{\gamma d} \]

Cohesion: Inner force between liquid molecules.

Adhesion: Attraction force between liquids, and a solid surface.
Fluids Properties

- **Water droplets**

\[
(P_i - P_o) \frac{\pi r^2}{2} = \sigma (2\pi r) \\

P_i - P_o = \frac{2\sigma}{r} \\

\text{or} \\

\Delta P = \frac{4\sigma}{d}
\]

Fluids Properties

- **Viscosity**

\[
F = \mu A \frac{dV}{dy} \\
\tan \theta = \frac{dV}{dy}
\]

Newton's eqn of Viscosity

Shear stress, Viscosity, Velocity gradient

Friction force
Fluids Properties

- Viscosity

\[\mu = \frac{\tau y}{V} = \frac{\text{Kg}}{\text{m} \cdot \text{sec}} = \frac{\text{N} \cdot \text{sec}}{\text{m}^2} = \frac{\text{gcm}}{\text{cm} \cdot \text{sec}} = \frac{\text{ dyn cm}}{\text{cm}^2} = \text{ Poise} \]

\[= \frac{\text{ slug}}{\text{ft} \cdot \text{sec}} = \frac{\text{lb sec}}{\text{ft}^2} \]

Poise = 0.1 Pa.s

\[\mu_{\text{water}} \approx 0.001 \text{ Pa.s} \]

\[\approx 0.01 \text{ poise} \]

Fluids Properties

- Kinematic Viscosity (\(\nu \))

\[\nu = \frac{\mu}{\rho} = \frac{\text{ML}^{-1}\text{T}^{-1}}{\text{ML}^{-3}} = \text{L}^2 \text{T}^{-1} \]

\[\nu = \frac{\text{cm}^2}{\text{sec}} = \text{stoke} \]

\[= \frac{\text{m}^2}{\text{sec}} \text{ or } \frac{\text{ft}^2}{\text{sec}} \]

Stoke = 10^{-4} \text{ m}^2/\text{sec}

\[\nu_{\text{water}} = 10^{-6} \text{ m}^2/\text{sec} = 10^{-2} \text{ stoke} \]
Applications of Viscosity
1- Plate moving with uniform velocity

a - against a horizontal plane

Resistance (Friction force) = $\tau.A$

\[
F = \mu \frac{V}{y} A
\]

b - between 2 planes

\[
F = \tau_1 A + \tau_2 A
\]

\[
\tau_1 = \mu \frac{V}{y_1}
\]

\[
\tau_2 = \mu \frac{V}{y_2}
\]
Applications of Viscosity

1- Plate moving with uniform velocity

\[\text{C - against an inclined plane} \]
\[\text{at uniform velocity } \Rightarrow (\Sigma F = 0) \]
\[W \sin \theta = \mu \frac{V}{y} A \]

Applications of Viscosity

2- Cylinder moving with uniform velocity

\[\text{a - Inner cylinder moving horizontally} \]
\[F = \mu \frac{V}{y} A \]
\[A = 2\pi r_1 L \]
\[F = \mu \frac{V}{r_2 - r_1} 2\pi r_1 L \]
Applications of Viscosity

2- Cylinder moving with uniform velocity

b - Inner cylinder moving vertically under gravity

\[W = \mu \frac{V}{y} A \]
\[A = 2\pi r_1 L \]
\[W = \mu \frac{V}{r_2 - r_1} 2\pi r_1 L \]

C - Outer moving and the inner fixed

\[W = \mu \frac{V}{y} A \]
\[A = 2\pi r_2 L \]
\[y = r_2 - r_1 \]
\[W = \mu \frac{V}{r_2 - r_1} 2\pi r_2 L \]
Hydrostatic Pressure

Pressure = \frac{\text{Force}}{\text{Area}} = \frac{\rho g h A}{A} = \gamma h

\[P = \gamma \ h \]

Pascal's hydrostatic equation

units ⇒ \(N/m^2 = \text{Pa} \) \quad \text{lb/ft}^2 = \text{Psi} \quad \text{lb/inch}^2 = \text{Ps}i

\[P_2 > P_1 \]
\[P_2 = P_1 + \gamma \ell h \]
\[\therefore \text{S.G.} = \frac{\gamma \ell}{\delta w} \]

\[
\begin{align*}
P_2 & = P_1 + \text{S.G.} \cdot \gamma w h \\
P_1 & = P_2 - \text{S.G.} \cdot \gamma w h
\end{align*}
\]

\[P_2 = \gamma \ell Z \quad \text{(gage)} \]
\[P_2 = \text{P}_{\text{atm}} + \gamma \ell Z \quad \text{(absolute)} \]

Gauge Pressure

It is the pressure measured by an instrument, in which the atmospheric pressure is taken as a datum.

Absolute Pressure

It is the sum of the atmospheric and gauge pressure

\[P_{\text{abs}} = P_{\text{atm}} + P_{\text{gage}} \]
\[P_A = 20 \text{ KPa} \quad (gage) \]
\[P_A = 101.3 + 20 = 121.3 \text{ KPa} \quad (absolute) \]
\[P_B = -40 \text{ KN/m}^2 \]
\[= 40 \text{ KN/m}^2 \quad \text{Vacuum} \]
\[= 40 \text{ KN/m}^2 \quad \text{suction} \]
\[P_B = 101.3 - 40 = 61.3 \text{ KN/m}^2 \quad (absolute) \]
Standard Values of P_{atm}

\[P_{atm} = 0.76 \text{ m Hg} = 0.76 \gamma_Hg = 0.76 \times 13.6 \times 9810 \]
\[= 10.33 \text{ m Water} = 10.33 \gamma_W = 10.33 \times 1 \times 9810 \]
\[= 101.3 \times 10^3 \text{ N/m}^2 \text{ (Pa)} \approx 1 \times 10^5 \text{ N/m}^2 = 1 \text{ bar} \]
\[= 14.7 \text{ Psi} \approx 14.7 \times 144 \text{ lb/ft}^2 \text{ (Psf)} \]
\[= 1 \text{ atmosphere} \]
\[= 34 \text{ ft water} \]
\[= 1.03 \text{ kg} \text{ m} / \text{ cm}^2 \]

Pressure measurements

1. Barometer

The barometer measures the atmospheric pressure at its location in absolute units.

\[P_{atm} = \text{Barometric Pressure} = \text{local atmospheric pressure} \]
\[P_{atm} = \text{Standard Value} = 101.3 \times 10^3 \text{ Pa} \]

a. Mercury Barometer

* It measures the atmospheric pressure in absolute units
* When a tube filled with Mercury is inverted in a reservoir filled with Mercury, the Mercury drops until its height is balanced by the atmospheric pressure.

\[P_{atm} = \gamma_Hg \cdot h \]
b- **Aneroid Barometer**

It measures the difference between the atmospheric pressure and an evacuated cylinder.

2- **Pressure gauges**

Bourdon gauge

It measures the pressure relative to the pressure surrounding the gauge.

\[P_{\text{gauge}} = P_{\text{in}} - P_{\text{out}} \]

If \(P_{\text{in}} = P_{\text{out}} \) \(\Rightarrow \) Reading \(= 0 \)

3- **Piezometer**

It measures positive gauge pressures of low magnitudes.

Limitations

- Piezometers do not work for negative pressures.
- It is impractical to measure large pressures (we need a very long tube).
Pressure head

Pressure head is the height of a column of fluid that will produce the given intensity of pressure

\[h = \frac{P}{\gamma} = \text{Pressure head} \]

When a Piezometer is inserted in a tube the height of which the fluid rises is the Pressure head.

4- Manometers

It measures fluid pressures by using different fluids which may be heavier or lighter than the fluid concerned.

a- Simple manometer

\[P_1 = P_2 \]
\[P_1 = P_A + \gamma_f h_1 \]
\[P_2 = P_{atm} + \gamma_m h_2 \]
\[\Rightarrow P_A = P_{atm} + \gamma_m h_2 - \gamma_f h_1 \]

Differential manometers are used

- When only the difference between two pressures are desired

U-tube manometer is used

- When there is a big pressure difference
- A heavy liquid such as mercury is used

Inverted U-tube manometer is used

- When there is a small pressure difference
- A light liquid such as oil is used.
b. Differential manometer

\[P_1 = P_2 \]
\[P_1 = P_A + \Delta P h_3 \]
\[P_2 = P_B + \Delta P h_2 + \Delta \eta h_1 \]

C. Inverted U tube Manometer

\[P_1 = P_2 \]
\[P_1 = P_A - \Delta P h_2 - \Delta \eta h_1 \]
\[P_2 = P_B - \Delta P h_3 \]

D. Micromanometer

i. Vertical tube Manometer

\[A \Delta = h_2 a \]

ii. Inclined tube manometer

\[A \Delta = L a \]
\[a = \frac{\pi d^2}{4} \]
Pascal's law

The intensity of Pressure at any point in a fluid at rest, is the same in all directions.

Consider a triangular prism of very small size.

\[\sum F_x = 0 \]

\[P_s \cdot ds \cdot \sin \theta = P_x \cdot dz \]

\[P_s \cdot ds \cdot \frac{dz}{ds} = P_x \cdot dz \]

\[\therefore P_s = P_x \]

\[\sum F_z = 0 \]

\[P_s \cdot ds \cdot \cos \theta + W = P_z \cdot dx \]

\[P_s \cdot ds \cdot \frac{dx}{ds} + \frac{1}{2} dx \cdot dz \cdot \gamma = P_z \cdot dx \]

\[P_s + \frac{1}{2} dz \cdot \gamma = P_z \]

\[\downarrow \quad dz \approx 0 \]

\[P_s = P_z \]

\[P_x = P_z = P_s \]

Pascal's law
Intensity of Pressure means rate of change of Pressure in a certain direction \(\left(\frac{dp}{dx}, \frac{dp}{dz} \right) \)

Variation of Pressure

\[
\begin{align*}
P_A(dz) & \downarrow \quad dW \quad P_C(dz) \\
& \downarrow \quad P_B(dx) \\
P_0(dx) & \uparrow
\end{align*}
\]

Consider a fluid element of size \(dx \cdot dz \) and unit length.

Let the static pressure at the center of the element \(P \)

\[
\begin{align*}
\Sigma F_x &= P_A(dz) - P_C(dz) = 0 \quad \text{ (1)} \\
\Sigma F_z &= P_B(dx) - P_D(dx) - dW = 0 \quad \text{ (2)}
\end{align*}
\]

\[
\therefore P_A = P - \frac{\partial P}{\partial x} \cdot \frac{dx}{2}, \quad P_C = P + \frac{\partial P}{\partial x} \cdot \frac{dx}{2}
\]

\[
P_B = P - \frac{\partial P}{\partial z} \cdot \frac{dz}{2} \quad P_D = P + \frac{\partial P}{\partial z} \cdot \frac{dz}{2}
\]

\[
dW = \gamma(dz)(dx)
\]

From (1)

\[
\left(P - \frac{\partial P}{\partial x} \cdot \frac{dx}{2} \right)(dz) - \left(P + \frac{\partial P}{\partial x} \cdot \frac{dx}{2} \right)(dz) = 0
\]

\[
\frac{\partial P}{\partial x} = 0
\]

\[\therefore \text{Pressure does not vary in horizontal direction}\]
From (2)
\[
\left(\rho - \frac{\partial \rho}{\partial z} \cdot \frac{dz}{z} \right) (dx) - \left(\rho + \frac{\partial \rho}{\partial z} \cdot \frac{dz}{z} \right) (dx) - \gamma (dz)(dx) = 0
\]
\[
\frac{\partial \rho}{\partial z} \cdot dz - \gamma dz = 0
\]
\[
\frac{\partial \rho}{\partial z} = -\gamma
\]
Pressure Varies in Vertical direction

For two points 1, 2
\[
\int_{\rho_1}^{\rho_2} dp = -\gamma \int_{z_1}^{z_2} dz
\]
\[
\therefore \rho_2 - \rho_1 = -\gamma (z_2 - z_1) = -\gamma h
\]
\[
\therefore \rho_1 = \rho_2 + \gamma h
\]

Pascal's application
1- hydraulic press
2- hydraulic jack
3- hydraulic lift
4- hydraulic crane

By applying a small force F on the plunger a larger load can be lifted by the ram
Forces on Plane Surfaces

C.G. = Center of Gravity
C.P. = Center of Pressure
A = Area of immersed surface (perpendicular to the page)
\(\overline{h} \) = Vertical distance from C.G. to the free surface (F.S.)
\(\overline{y} \) = Inclined distance from C.G. to the free surface (F.S.)
\(\alpha \) = Angle of slope of the surface

To determine the resultant hydrostatic force

\[dF = P \cdot dA = \gamma h \cdot dA \]
\[= \gamma y \cdot \sin \alpha \cdot dA \]
\[\Rightarrow h = y \cdot \sin \alpha \]

\[\int dF = \gamma \sin \alpha \cdot \int y \cdot dA \]
\[\int y \cdot dA = A \cdot \overline{y} \] (First moment of area about point 0)
\[F = \gamma \sin \alpha \cdot A \cdot \overline{y} \]

\[F = \gamma A \overline{h} \]

\[\overline{y} = \frac{\overline{h}}{\sin \alpha} \]
To determine the line of action

The moment dM due to the force about O is

$$dM = dFY$$

$$= (\gamma y \sin \alpha \, dA) y$$

$$\int dM = \gamma \sin \alpha \int y^2 \, dA$$

$$\therefore \int dM = F \cdot y_{cp}$$

$$\therefore \int y^2 \, dA = I_o \quad \text{(Second moment of Area about point O)}$$

$$\therefore F \cdot y_{cp} = \gamma \sin \alpha \cdot I_o$$

$$\gamma \cdot y \sin \alpha \cdot A\gamma_{cp} = \gamma \sin \alpha \cdot I_o$$

$$\gamma \cdot y \sin \alpha \cdot A\gamma_{cp} = \gamma \sin \alpha \cdot I_o$$

$$y_{cp} = \frac{I_o}{A \gamma}$$

$$\therefore I_o = I_{c.g} + A \gamma^2$$

$$y_{cp} = \frac{I_{c.g} + A \gamma^2}{A \gamma}$$

$$\gamma_{cp} = \left(\frac{I_{c.g}}{A \gamma} \right) + \bar{y}$$

(F) Resultant

$$\Delta = \frac{I_{c.g}}{A \gamma}$$
Properties of Area

1- Rectangle
\[A = bZ \]
\[I_{xx} = \frac{bZ^3}{12} \]

2- Triangle
\[A = \frac{1}{2} bZ \]
\[I_{xx} = \frac{bZ^3}{36} \]

3- Circle
\[A = \frac{\pi d^2}{4} \]
\[I_{xx} = \frac{\pi d^4}{64} \]

4- Semicircle
\[A = \frac{\pi d^2}{8} \]
\[I_{xx} = \frac{\pi d^4}{128} - \frac{d^4}{18\pi} = 0.11r^4 \]

e.g.

Calculate

1. \[A = \frac{1}{2} bZ \]
2. \[I_{xx} = \frac{bZ^3}{36} \]
3. \[\bar{h} = \sqrt{h} \]
4. \[\bar{h} = \frac{h}{\sin \alpha} \]

Free surface (F.S.)
Special Cases

1- $\alpha = 0$

$\bar{y} = \frac{h}{\sin \alpha} = \infty$

$\Delta = \frac{I_{c.g}}{A h} = \frac{I_{c.g}}{\infty} = 0$

السطح المستوية الأفقية يكون عليها ضغط منتظم.
وبالتالي تؤثر القوة في ال C.g. هذا السطح

2- $\alpha = 90^\circ$

$\bar{y} = \bar{h}$

$\Delta = \frac{I_{c.g}}{A h}$

السطح الرأسية أو المائلة يكون عليها ضغط غير منتظم.
وبالتالي تؤثر القوة أسفل ال C.g. والقوة F للبوية

3- Gas

ضغط الغاز موزع بانتظام على جدران الخزان.
وبالتالي تؤثر القوة في ال C.g. للبوية

$F = P_A \text{ gate}$

Pressure prism

تؤثر القوة في مركز ثقل المنشور أى في ثلث الارتفاع من القاعدة.
أو (أسفل مركز النقل في حالة المستطيلات بمسافة $\Delta = \frac{h}{6}$).

Δ تؤثر القوة في مركز ثقل المنشور أى في أسفل مركز النقل المثلث بمسافة Δ.

Free Surface

$\bar{h} = \bar{h}$

$\Delta = \frac{P}{\gamma}$

Δ
1. The Equation (for any surface)

\[F = \gamma A \bar{h} \]
\[\Delta = \frac{I_{c.g}}{A \bar{y}} \]

Closed tank with 2 fluids

The tank is filled with 2 fluids, one of which is air. The equation for the force on the tank is:

\[F_o = P \cdot A \]
\[F_1 = \gamma_1 h_1 A \]
\[F_2 = \gamma_2 A \bar{h}_2 \]
\[F_{total} = F_o + F_1 + F_2 \]
\[\Delta_2 = \frac{I_{c.g}}{A \bar{y}_2} \]

For the inclined surface with 2 fluids (closed tank):

\[F_1 = (\gamma_1 h_1 + P) A \]
\[F_2 = \gamma_2 A \bar{h}_2 \]
\[\bar{y}_2 = \frac{h_2}{\sin \alpha} \]
\[\Delta_2 = \frac{I_{c.g}}{A \bar{y}_2} \]
Special Case

Gate subjected to 2 fluids

\[F_1 = P_1 A_1 \]
\[F_2 = \gamma_1 A_1 h_1 \]
\[\Delta = \frac{I_{c.g.}}{A_1 \gamma_1} \]
\[\overline{y}_1 = \frac{h_1}{\sin \alpha} \]

\[P_2 = P_1 + \gamma_1 h_1 \]
\[F_3 = P_2 A_2 \]
\[F_4 = \gamma_2 A_2 h_2 \]
\[\Delta = \frac{I_{c.g.}}{A_2 \overline{y}_2} \]
\[\overline{y}_2 = \frac{h_2}{\sin \alpha} \]
2- Pressure distribution
(For rectangular surfaces only)

\[F = \frac{1}{2} \gamma h^2 b \]

\[A = bh \]
\[\bar{h} = \frac{h}{2} \]
\[F = \gamma bh \frac{h}{2} = \frac{1}{2} \gamma h^2 b \]

Closed tank with +ve pressure

\[F_1 = (\gamma h_1 + p) h_2 b \]
\[F_2 = \frac{1}{2} (\gamma h_2) h_2 b \]

Closed tank with -ve pressure

\[F_1 = (\gamma h_1 - p) h_2 b \]
\[F_2 = \frac{1}{2} (\gamma h_2) h_2 b \]
Inclined surface with 2 fluids

\[
P_1 = \gamma_1 h_1 + \gamma_2 h_2
\]
\[
P_2 = P_1 + \gamma_2 h_3
\]

\[
F_1 = P_1 A = (\gamma_1 h_1 + \gamma_2 h_2) LB
\]
\[
F_2 = \left(\frac{P_2 - P_1}{2}\right) A = \frac{1}{2} \gamma_2 h_3 LB
\]

3-Imaginary Free Surface (I.F.S.)

 فكرة هذه الطريقة هي محاولة إيجاد Free Surface للبوابة المغمورة في السائل

\[
\gamma_2
\]

يتتم تحويل الضغط الناتج عن السائل \(\gamma_1 h_1\) والضغط \(P\) إلى ارتفاع مكافئ من السائل \(\gamma_2\)

\[
h_{eq} = \frac{P + \gamma_1 h_1}{\gamma_2}
\]

\[
F_{total} = \gamma_2 A \bar{h}
\]

\[
\Delta = \frac{I_{c.g}}{Ay}
\]

\[
\bar{y} = \bar{h}
\]
Gate Subjected to 2 Fluids

\[h_{eq,1} \]

\[h_{eq,2} \]

\[h_1 \]

\[h_2 \]

\[(I.F.S)_1 \]

\[(I.F.S)_2 \]

\[\bar{h}_1 \]

\[\bar{h}_2 \]

\[\gamma_1 \]

\[\gamma_2 \]

\[A_1 \]

\[A_2 \]

\[y_{c.g.1} \]

\[y_{c.g.2} \]

\[\Delta_1 = \frac{I_{c.g.1}}{A_1 y_1} \]

\[\bar{y} = \bar{h}_1 \]

\[\bar{y} = \bar{h}_1 \]

\[F_1 = \gamma A_1 \bar{h}_1 \]

\[F_2 = \gamma A_2 \bar{h}_2 \]

\[\Delta_2 = \frac{I_{c.g.2}}{A_2 y_2} \]

\[F = F_1 + F_2 \]

\[F_2 d = F z \]

\[\Rightarrow \text{get } z \] (line of action)
Forces on Curved Surfaces

\[F = \gamma A \bar{h} \]

where: \(A = br \), \(\bar{h} = Z + \frac{r}{2} \)

\[\Delta = \frac{I_{c.g.}}{A \bar{y}} \]

\[\bar{y} = \bar{h} \]

\[I_{c.g.} = \frac{br^3}{12} \]
خطوات العمل

يتم استئصال الـ Curved Surface على مستوى رأسه وتعلق مع المساحة المسطقة

تجاه المركبة الأفقية عمودياً على المساحة المسطقة

وخط عملها يمر أسفل مركز المساحة المسطقة بمسافة Δ

$F_v \ (Vertical \ Component)$

المركبة الرأسية F_v هي عبارة عن وزن السائل المخصور بين ال Free Surface على ال Curved Surface

$F_v = \gamma A$

خطوات العمل

يتم استئصال أعلى وأسفل نقطة لل Curved Surface على بشرط ألا تكون بينهما نقطة انقلاب Free Surface

في حالة عدم وجود نقطة انقلاب Curved Surface يُتم استئصال أسفل نقطة A وأعلى نقطة B، في Free Surface على ال AB (C.S.)

وتكون المركبة الرأسية F_v هي عبارة عن وزن السائل المخصور بين ال $A \ 'B \ ' \ (F.S.)$

Inflection point

في حالة وجود نقطة انقلاب (F.S.) يُتم استئصال أعلى نقطة C ونقطة الانقلاب على ال (F.S) وكذلك استئصال أسفل نقطة C ونقطة الانقلاب على ال (F.S)

وتكون المركبة الرأسية هي عبارة عن الفرق في الوزن بين 1,2
اتجاه

F_V يتأثر رأسياً لأسفل F_V, لو كان السائل فوق ال C.S. لو كان السائل أسفل ال F_V رأسياً لاعلى. في الحالة الثانية قد لا يوجد أي سائل فوق F_V.

لكن القوى Curved Surface

هي عبارة عن قوى مكافئة لوزن نفس السائل محتويًا على حجم تخيلي فوق ال Curved Surface واتجاهه لأعلى Free Surface وحتى ال Surface

خط عمل F_V

Free Surface وال Curved Surface تؤثر القوى في مركز تنقل الحجم المقصور بين ال F_V.

$F_V = \gamma V$

$V_1 = (h + r) r b$

$V_2 = \frac{1}{4} \pi r^2 b$

$V = V_1 - V_2$

$x = \frac{V_1 x_1 - V_2 x_2}{V}$
6

Fluid Masses Subjected to Linear Acceleration

uniform acceleration "a" moves as a solid body (no shear stresses)

Assume the acceleration (a) in a given direction and its components a_x, a_z

\[
\tan \theta = \frac{Z}{L/2}
\]

العجلة في الاتجاه الأفقي a_x

العجلة في الاتجاه الرأسي a_z

الزاوية بين ال Free Surface قبل الحركة وال Free Surface بعد الحركة θ
1. Horizontal acceleration

\[
\frac{\partial P}{\partial x} = -\frac{\gamma}{g} a_x
\]

From this equation, we can see that an increase in the horizontal direction also results in a decrease in the force. If we add a negative sign, we can write:

\[
|P| a_x = 0 \Rightarrow \frac{\partial P}{\partial x} = 0
\]

This is known as a uniform velocity. If the horizontal acceleration is zero, then the force remains constant. However, if the horizontal acceleration is not zero, then the force will change accordingly.

2. Vertical acceleration

\[
\frac{\partial P}{\partial z} = -\frac{\gamma}{g} (g + a_z)
\]

For a tank that is moving vertically, the expression for the vertical acceleration is given by:

\[
\text{If } a_z = 0 \Rightarrow \frac{\partial P}{\partial z} = -\gamma
\]

This expression shows that the force remains constant when the vertical acceleration is zero. However, if the vertical acceleration is not zero, then the force will change accordingly. If the tank is moving upward, then the force will increase if the vertical acceleration is positive, and decrease if it is negative.
\[p = \frac{\gamma}{g} (g + a_z) h = \sigma' h \]

\[\gamma = \frac{\sigma}{g} (g + a_z) \]

3 Combined Horizontal and Vertical Acceleration

\[
\tan \theta = \frac{a_x}{g + a_z}
\]

\[a_x = a \cos \phi \]

\[a_z = a \sin \phi \]

\(a_x \rightarrow (+ve) \) \(\iff \) \(a_z \) لأسفل

\(a_z \rightarrow (-ve) \) \(\iff \) \(a_z \) لأعلى

* If \(a_x = 0 \) \(\Rightarrow \) \(\tan \theta = 0 \)

في حالة عدم وجود عجلة أفقيّة فإن سطح السائل يظل أفقياً

* If \(a_z = 0 \) \(\Rightarrow \) \(\tan \theta = \frac{a_x}{g} \)
How to Know if liquid will be spilt?

\[
\tan \theta = \frac{a_x}{g + a_z} = \frac{Z}{L/2}
\]

\[\Rightarrow \text{get } Z\]

If \(Z < h \) case (a) no liquid is spilled

If \(Z = h \) case (b) liquid at the point of spilling

If \(Z > h \) water is spilled \(\Rightarrow 3 \) cases

How to get \((a_x)_{\text{max}} \) or \(\text{max height of the Container} \) to make the liquid at the spilling point

\[
\tan \theta = \frac{a_{x_{\text{max}}}}{g + a_z} = \frac{h}{L/2}
\]

\[\Rightarrow \text{get } a_{x_{\text{max}}}\]

\[
\tan \theta = \frac{a_x}{g + a_z} = \frac{h_{\text{max}}}{L/2}
\]

\[\Rightarrow \text{get } h_{\text{max}}\]
When is liquid spilled?

1. If \(z > h \)
 or \(\alpha_x > \alpha_{x_{\text{max}}} \)

 Liquid is spilled

\[\tan \theta = \frac{\alpha_x}{g + \alpha_z} = \frac{y}{L} \]

\(\Rightarrow \) get \(y \)

1. If \(y < H + h \) \(\Rightarrow \) Case 1
2. If \(y = H + h \) \(\Rightarrow \) Case 2
3. If \(y > H + h \) \(\Rightarrow \) Case 3

Case 3

\[\tan \theta = \frac{\alpha_x}{g + \alpha_z} = \frac{H + h}{X} \]

\(\Rightarrow \) get \(x \)

How to get the Volume of spilled water?

For Case 1, 2

Volume spilled = Volume of air after motion - Volume of air before motion

\[V_{\text{spilled}} = \left[\frac{1}{2} L y - L h \right] b \]

Case 3

Volume spilled = Volume of water before motion - Volume of water after motion

\[V_{\text{spilled}} = \left[L H - \frac{1}{2} x (H + h) \right] b \]
Case of closed tank, find Pressure at (1) and (2)

\[\tan \theta = \frac{a_x}{g + a_z} = \checkmark \]

\[\tan \theta = \frac{y}{x} \rightarrow \circ \]

\[\because \text{Area of air before motion} = \text{Area of air after motion} \]

\[Lh = \frac{1}{2}xy \rightarrow \circ \]

from (1), (2) ⇒ get x, y

⇒ get z

\[P_1 = P_{air} + \frac{y}{g} (g + a_z) [H + h + z] \]

\[P_2 = P_{air} + \frac{y}{g} (g + a_z) [H + h - y] \]

Forces on tank sides during acceleration

\[F = \gamma'Ah \]

\[\gamma' = \frac{y}{g} (g + a_z) \]

\[A = \text{area of side view} \]

\[\bar{h} = \frac{h}{2} \]
Apply the basic hydrostatics equation to determine the pressure variation in the horizontal and vertical directions and the slope of the surface of constant pressure for any body fluid in rigid body motion.

Fluid Masses Subjected to linear Acceleration

Consider a small fluid element with dimensions \((dx \, dZ)\)

\[
\Sigma F_x = P_A \, dZ - P_C \, dZ \quad \cdots \quad 1
\]

\[
\Sigma F_Z = P_B \, dx - P_D \, dx - dW \quad \cdots \quad 2
\]

\[
P_A = P - \frac{\partial P}{\partial x} \frac{dx}{2}, \quad P_C = P + \frac{\partial P}{\partial x} \frac{dx}{2}
\]

\[
P_B = P - \frac{\partial P}{\partial z} \frac{dz}{2}, \quad P_D = P + \frac{\partial P}{\partial z} \frac{dz}{2}
\]

\[
\Sigma F_x = dM \, a_x \quad \cdots \quad 4
\]

\[
P_A \, dZ - P_C \, dZ = dM \, a_x
\]

\[
\left(P - \frac{\partial P}{\partial x} \frac{dx}{2} \right) dx \, dz - \left(P + \frac{\partial P}{\partial x} \frac{dx}{2} \right) dx \, dz = \frac{\gamma}{g} \, dx \, dx \, dz \, a_x
\]

\[
- \frac{\partial P}{\partial x} \, dx = \frac{\gamma}{g} \, dx \, a_x
\]
\[
\frac{\partial p}{\partial x} = -\frac{g}{g} a_x \quad \rightarrow (5)
\]

\[
\sum F_z = dM a_z \quad \rightarrow (6)
\]

\[
P_B dx - P_D dx - dW = dM a_z
\]

\[
(P - \frac{\partial p}{\partial z} \frac{dz}{z}) dx - (P + \frac{\partial p}{\partial z} \frac{dz}{z}) dx - \gamma dx dz = \frac{\gamma}{g} dx dz a_z
\]

\[
-\frac{\partial p}{\partial z} dz - \gamma dx dz = \frac{\gamma}{g} dz a_z
\]

\[
\frac{\partial p}{\partial z} = -\frac{\gamma}{g} (g + a_z) \quad \rightarrow (7)
\]

\[
dp = \frac{\partial p}{\partial x} dx + \frac{\partial p}{\partial z} dz = 0 \quad \rightarrow (8)
\]

\[
\frac{dz}{dx} = \frac{-\partial p / \partial x}{\partial p / \partial z}
\]

\[
\tan \theta = \frac{dz}{dx} = -\frac{a_x}{g + a_z} \quad \rightarrow (9)
\]
Uniform Rotation about Vertical Axis

\[\omega = \frac{2\pi N}{60} \]

\(N = \) number of revolutions per minute (r.p.m.)

\(\omega = \) Angular Velocity

\[y = \frac{\omega^2 x^2}{2g} \]

\[h = \frac{\omega^2 r^2}{2g} \]

If no liquid is spilled

Volume of air before rotation = Volume of air after rotation

\[\pi r^2 \bar{h} = \frac{1}{2} \pi r^2 h \]

\[\Rightarrow \bar{h} = \frac{h}{2} \]
Open Tank Cases

1. \(h < 2z \)
 - No spilling
 - No spilling (at the point of spilling)

2. \(h = 2z \)

3. \(h > 2z \)
 - Spilling

4. Point at the center is just uncovered

5. Bottom of the tank is uncovered

Closed Tank Cases

1. \(h < 2z \)

2. \(h = 2z \)
 - Water starts to touch the lid

3. \(h > 2z \)

4. Point at the center is just uncovered

5. Bottom of the tank is uncovered
Buoyancy & Floatation

Archimedes principle
Any weight, floating or submerged in a liquid, is acted upon by a **buoyant force** equal to the weight of the liquid displaced, and acts through the center of gravity of the displaced liquid.

\[\gamma_b V_b = \gamma_w V_{sub} \]

\[s.g \ \gamma_w Lb d = \gamma_w Lb h_{sub} \]

\[h_{sub} = s.g \ d \] (in this example)

Center of Gravity (G) = Centroid of the whole body
Center of Buoyancy (B) = Centroid of the displaced liquid

Rotational stability of floating bodies

Upright position (no moment)

Righting couple

Overturning

Original position

- **Stable**

- **M above G**

- **Stable**

- **M under G**

- **Unstable**
* When the body is upright, point G and B lie on the same vertical
 ⇒ no moment
* When the body is slightly rotated through a small angle θ the shape of the displaced volume gets different with an increase of volume towards one side.
 ⇒ the centroid of the displaced volume B changes to B′
* Let a vertical through B′ intersect the centerline at M
* The line of action of the buoyant force (acting through B′) forms a righting couple to return the body to its original position.
 ⇒ the body is stable when point M is above G
* The point (M) is called the metacenter.

\[GM = BM - BG \]

\[GM = \text{metacentric height} \]
\[= +\text{ve} \quad \text{stable} \]
\[= -\text{ve} \quad \text{unstable} \]

where

\[BM = \frac{I_y}{V_{sub}} \]

\[I_y = \text{Moment of inertia around axis of rotation} \]
\[V_{sub} = \text{Submerged Volume} \]

\[BG = \text{distance between B and G} \]
\[BG = \frac{d}{2} - \frac{h_{sub}}{2} \quad (\text{in this example}) \]
Center of Buoyancy
- It is the point of application of the force of buoyancy on the body.
- It is always the center of gravity of the volume of fluid displaced.

Types of equilibrium of Floating bodies
1. Stable equilibrium,
2. Unstable equilibrium and
3. Neutral equilibrium.

Stable Equilibrium
- It occurs when a body is tilted slightly by some external force, and then it returns back to its original position due to the weight and the upthrust.
- The position of metacentre M is higher than the center of gravity G.

Unstable Equilibrium
- It occurs when a body does not return to its original position from the slightly displaced angular position.
- The position of metacentre M is lower than G.

Neutral Equilibrium
- It occurs when a body, when given a small angular displacement, occupies a new position and remains at rest.
- The position of metacentre M coincides with G.

Metacentre
- The metacentre is the point of intersection of the axis of the body passing through the center of gravity (G) with the original centre of buoyancy (B) and a vertical line passing through the centre of buoyancy (B') of the tilted position of the body.
- The position of metacentre (M) remains practically constant for the small angle of tilt θ.

Metacentric Height:
- It is the distance between the centre of gravity of a floating body and the metacentre.
- $GM = BM - BG$
Fundamentals of Fluid Flow

Types of fluid flow

1- Steady and unsteady flow

a- Steady flow

It occurs when velocity, acceleration, etc doesn't change with time

\[\frac{dV}{dt} = 0 \]

b- Unsteady flow

It occurs when velocity or acceleration, etc changes with time

e.g. flow in a pipe whose valve is opening or closing

\[\frac{dV}{dt} \neq 0 \]

2- Uniform and Non-uniform flow

a- Uniform flow

It occurs when velocity and cross-section remains constant over a given length

\[\frac{dV}{dL} = 0, \quad \frac{dA}{dL} = 0 \]

b- Non-uniform flow

It occurs when velocity or cross-section changes over a given length

\[\frac{dV}{dL} \neq 0, \quad \frac{dA}{dL} \neq 0 \]
3- Laminar and turbulent flow

a- Laminar flow
It occurs when fluid particles in parallel paths and do not intersect
* e.g. flow through capillary tubes, ground water, and blood in veins.

\[R_n < 2000 \]

b- Turbulent flow
It occurs when fluid particles move in random motion
* e.g. Nearly in all flow in pipes

\[R_n > 4000 \]

4- Rotational and Irrotational flow

a- Rotational flow
It occurs when fluid particles have a rotation about an axis

b- Irrotational flow
It occurs when fluid particles don't have a rotation about an axis

5- Compressible and incompressible flow

a- Compressible flow
It occurs when the density of the fluid changes from point to point
* e.g. Flow of gases through orifices and nozzles

b- Incompressible flow
It occurs when the density is constant for fluid flow
* e.g. Liquid are generally considered flowing incompressibly
6- One, two three dimensional flow

a- One dimensional flow

It occurs when the velocity is a function of time and one co-ordinate.

\[v = f(x, t) \]

e.g. Flow through a straight uniform diameter pipe

The flow is never truly 1 dimensional, because viscosity causes the fluid velocity to be zero at the boundaries.

b- Two dimensional flow

It occurs when the velocity is a function of time and two co-ordinates

\[v = f(x, y, t) \]

e.g. Flow in the main stream of a wide river

c- Three dimensional flow

It occurs when the velocity is a function of time and three co-ordinates

\[v = f(x, y, z, t) \]

e.g. Flow in a converging or diverging pipe
7- Stream lines and stream tubes

a- Streamlines

- Streamlines are imaginary curves drawn to show the direction of fluid flow
- The tangent at any point gives the velocity direction

b- Streamtubes

- A stream tube is a fluid mass bounded by a group of streamlines

8- Ideal and Real Fluids

a- Ideal Fluids

- It is a fluid that has no viscosity, and incompressible
- Shear resistance is considered zero
- Ideal fluid does not exist in nature

* e.g. Water and air are assumed ideal

b- Real Fluids

- It is a fluid that has viscosity, and compressible
- It offers resistance to its flow

* e.g. All fluids in nature
9- Viscous and inviscid flow

a- Viscous flow

- It occurs for fluids that have viscosity which offers shear resistance to the flow
- A part of the total energy is lost in flow

b- Inviscid flow

- It occurs for fluids that have no viscosity
- No shear resistance to the flow
- The total energy remains constant.

10- Mean velocity and Discharge

a- Mean velocity

It is the average velocity passing a given section

\[V_{\text{mean}} = \frac{Q}{A} \]

b- Discharge

It is the rate of Volume of liquid passing a given cross-section

\[Q = \frac{V}{t} = A \cdot V \]
The Continuity equation

If no fluid is added or removed from the pipe in any length then the mass passing across different sections shall be the same

\[\rho_1 \cdot dA_1 \cdot V_1 = \rho_2 \cdot dA_2 \cdot V_2 \]

For incompressible fluids \(\rho_1 = \rho_2 \)

\[A_1 \cdot V_1 = A_2 \cdot V_2 \]

\[Q = \text{Discharge} = \text{Area} \times \text{Velocity} = A \cdot V \]

\[= \text{Flow rate} = \frac{\text{Volume}}{\text{Time}} = \frac{V}{t} \]

\(Q = \text{Constant} \)

Input = Output

\[Q_1 = Q_2 + Q_3 \]
Applying the continuity equation

\[Q_A = A \cdot V = \frac{\pi d^2}{4} \cdot V \]

\[= \frac{\pi (0.45)^2}{4} \cdot 1.8 = 0.286 \, m^3/s \]

\[Q_D = A \cdot V = \frac{\pi (0.225)^2}{4} \cdot 3.6 = 0.143 \, m^3/s \]

\[Q_A = Q_c + Q_D \]

\[0.286 = Q_c + 0.143 \quad \Rightarrow \quad Q_c = \frac{0.143}{m^3/s} \]

\[V_c = \frac{Q_c}{A_c} = \frac{0.143}{\pi (0.15)^2} = 8.09 \, m/s \]

\[Q_B = Q_A = 0.286 \, m^3/s \]

\[V_B = \frac{Q_B}{A_B} = \frac{0.286}{\pi (0.3)^2} = 4.04 \, m/s \]
Fluid Dynamics

For any Fluid element it has

Three energies or heads

1- Potential energy or Potential head

\[P.E = MgZ \]

Potential head = \(\frac{P.E}{\text{unit weight}} = \frac{MgZ}{Mg} = Z \)

2- Kinetic energy or Velocity head

\[K.E. = \frac{MV^2}{2} \]

Velocity head = \(\frac{K.E.}{\text{unit weight}} = \frac{MV^2}{2Mg} = \frac{V^2}{2g} \)

\[\frac{V^2}{2g} = \frac{L^2 T^{-2}}{L T^{-1}} = (L) \]

3- Pressure energy or Pressure head

Pressure energy = \((\gamma h) \cdot A \cdot X \)

Pressure head = \(\frac{\text{Pressure energy}}{\text{unit weight}} \)

\[= \frac{\gamma h A X}{\gamma A X} = h = (L) \]
Ideal Fluid
Euler & Bernoulli's eqn

Consider a fluid element of cross-section \(\Delta A \) and length \(\Delta s \) moving along a streamline.

Applying Newton 2\(^{nd}\) law

\[
P dA - (P + dP) dA - dW \sin \theta = dM a
\]

\[
P dA - P dA - dP dA - \gamma dA d\xi \left(\frac{d\xi}{ds} \right) = P dA d\xi \frac{dv}{dt}
\]

\[
\frac{-dP}{\gamma} - d\xi = P d\xi \frac{dv}{dt} \div \gamma
\]

\[
\frac{-dP}{\gamma} - d\xi = \frac{\rho}{\gamma} \left(\frac{d\xi}{dt} \right) dv
\]

Euler's eqn

\[
\frac{dP}{\gamma} + d\xi + \frac{v^2}{2g} = 0
\]

Equation of steady motion along a streamline

By integration of Euler's equation

Bernoulli's eqn

\[
\frac{P}{\gamma} + Z + \frac{V^2}{2g} = \text{Constant}
\]

Pressure head + Position head + Velocity head = Total head
Real Fluid

Real fluid has an additional force acting caused by friction

\[F = \tau dA = \tau (2\pi r) ds \]

Applying Newton 2nd law

\[P dA - (P + dP) dA - dW \sin \theta - \tau (2\pi r) ds = dMa \]

\[-dP dA - \gamma dA d\frac{d(z)}{ds} - \tau \left(\frac{2\partial^2}{r} \right) ds = \rho dA ds d\frac{V}{ds} \]

\[\therefore dA = \pi r^2 \quad \div \gamma \]

\[\frac{-dP}{\gamma} + \frac{d(z)}{\gamma} - \frac{2\tau ds}{\gamma r} = \frac{V dV}{g} \]

\[\frac{dP}{\gamma} + \frac{d(z)}{\gamma} + \frac{d(V^2)}{2g} = \frac{-2\tau ds}{\gamma r} \]

\[\int_{1}^{2} \frac{dP}{\gamma} + \int_{1}^{2} \frac{d(z)}{\gamma} + \int_{1}^{2} \frac{d(V^2)}{2g} = \int_{1}^{2} \frac{-2\tau ds}{\gamma r} \]

\[\left(\frac{P_1}{\gamma} + Z_1 + \frac{V_1^2}{2g} \right) - 2\frac{\tau L}{\gamma r} = \left(\frac{P_2}{\gamma} + Z_2 + \frac{V_2^2}{2g} \right) \]

Dims of \[\frac{2\tau L}{\gamma r} = \frac{N/m^2 \times m}{N/m^3 \times m} = m \]

\[H_1 (\text{Total energy at Sec 1}) - h_L (\text{head lost}) = H_2 (\text{T.E. at Sec 2}) \]
Total Energy Line (T.E.L.)

\(\left(\frac{P}{\rho} + \frac{V^2}{2g} + Z \right) \)

Bernoulli's equation holds for incompressible and irrotational flows. The total energy line (T.E.L.) is used to analyze energy changes in a fluid system.

Losses:

- In an ideal flow, losses are considered negligible.
- In a real flow, losses are present.

Hydraulic Gradient Line (H.G.L.)

(static head) \(\left(\frac{P}{\rho} + Z \right) \)

The hydraulic gradient line (H.G.L.) represents the static head in a fluid system.

Dynamic head:

\(\frac{V^2}{2g} \)

The dynamic head is the head due to the velocity of the fluid.

Examples on Ideal Fluid

1. \(\frac{V_1^2}{2g} \) and \(\frac{V_2^2}{2g} \) are shown.
2. \(\frac{P_1}{\rho} \) and \(\frac{P_2}{\rho} \) are shown.

Datum:

- In a real flow, the datum is set to 0 after losses are considered.
- In an ideal flow, the datum is set to 0 before losses are considered.

In the first example, the pressure at point 1 is higher than at point 2, indicating a decrease in energy due to losses.

In the second example, the pressure at point 1 is lower than at point 2, indicating an increase in energy due to losses.

Imaginary free surface:

The free surface of an ideal fluid is considered imaginary, as it does not experience losses.

In a real fluid, the free surface may be affected by losses, but in an imaginary scenario, it remains constant.

Diagram:

- Diagram 1 shows a section of a pipe with a change in pressure and elevation.
- Diagram 2 shows a slope with a change in pressure and elevation.

In a real fluid system, the T.E.L. is influenced by losses, whereas in an ideal fluid, it remains consistent.

In a real fluid system, losses are accompanied by changes in the T.E.L., whereas in an ideal fluid, the T.E.L. remains constant.
Example on H.G.L

1) H.G.L above pipe's Centerline have +ve Pressure
2) H.G.L below pipe's Centerline have -ve Pressure
3) Centerline intersecting with H.G.L have Zero Pressure
Example on Real Fluid

Losses

1. **Main Losses**
 (Friction Losses)

 \[h_{L_{\text{friction}}} = \frac{F L}{d} \left(\frac{V^2}{2g} \right) = K \frac{V^2}{2g} \]

 \[\Sigma h_L = h_{L_1} + h_{L_2} + h_{L_3} + h_{L_4} \]

 Apply Bernoulli between 0, 2

 \[\frac{P_1}{\rho g} + \frac{V_1^2}{2g} + Z_1 = \frac{P_2}{\rho g} + \frac{V_2^2}{2g} + Z_2 + \Sigma h_L \]

 \[H = \Sigma h_L \]
Pumps (Adds energy to the System)

\[\frac{P_1}{g} + \frac{V_1^2}{2g} + Z_1 + H_p = \frac{P_2}{g} + \frac{V_2^2}{2g} + Z_2 \]

\[H_p = H \]

System \(\Rightarrow \) Energy \(\downarrow \) Pump \(\Rightarrow \) Higher G.L. \(\Rightarrow \) T.E.L.

Turbines (Extracts energy from the System)

\[\frac{P_1}{g} + \frac{V_1^2}{2g} + Z_1 - H_T = \frac{P_2}{g} + \frac{V_2^2}{2g} + Z_2 \]

\[H = H_T \]

System \(\Rightarrow \) Energy \(\uparrow \) Turbine \(\Rightarrow \) Lower G.L. \(\Rightarrow \) T.E.L.
Bernoulli’s General equation

\[\frac{P_A}{\gamma} + \frac{V_A^2}{2g} + Z_A + H_P - \sum H_L - H_T = \left(\frac{P_B}{\gamma} + \frac{V_B^2}{2g} + Z_B \right) \]

Notes

- \(P_0 \) or End of pipe \((P=0)\)
- \(P \neq 0 \) not an End

- T.E.L × Fatal Mistake

طريقة حل مائل

1- يتم رسم المئذنة واتخاذDatum لكل المئذنة. ويفضل أن يكون Datum عند أقل منبوب لتجنب الإشارات المفيدة

2- تطبيق Bernoli بين النقطتين في نفس المائل

3- لعلمك الرغبة تعمل بمراقبة تردد بينهما V1 و V2 عبر معيّنة

4- يتم طرح أي losses

5- يتم طرح أي ناتج عن وجود head

6- يتم زيادة أي ناتج عن وجود head
Higher Technological Institute
Civil Engineering Department

Sheets of
Fluid Mechanics

Dr. Amir M. Mobasher
Q1: Using dimensional analysis, put down the dimensions and units in the engineering systems \{pound (lb), foot (ft), second (s)\} and \{kilogram (kg), meter (m), second (s)\} for the following engineering quantities:
- Density (\(\rho\)), specific weight (\(\gamma\)), surface tension (\(\sigma\)), pressure intensity (\(p\)), dynamic viscosity (\(\mu\)), kinematic viscosity (\(\nu\)), energy per unit weight, power, linear momentum, angular momentum, shear stress (\(\tau\)).

Q2: Show that the following terms are dimensionless:
\[
\frac{v}{u}, \frac{\rho v}{\mu}, \frac{v}{\sqrt{g \gamma}}, \frac{p}{\rho v^2}, \frac{L v^2}{h g d}
\]

Q3: Find the dimensions for the following terms:
\[
\frac{v^2}{g}, \frac{p}{\gamma}, \rho v, \gamma y, \frac{dp}{dx}, \frac{\tau}{y}, \rho Q v, \gamma Q L
\]

Q4: Convert the following terms:
- \(\gamma = 1000 \text{ kg/m}^3\) to \(\text{lb/ft}^3\)
- \(g = 9.81 \text{ m/sec}^2\) to \(\text{ft/sec}^2\)
- \(p = 7 \text{ kg/cm}^2\) to \(\text{N/m}^2\)
- \(\gamma = 710 \text{ dyne/cm}^3\) to \(\text{lb/ft}^3, \text{N/m}^3\)
- \(\mu = 4640.84 \text{ poise}\) to \(\text{lb.sec/ft}^2, \text{Pa.sec}\)
Sheet (2) – Fluid Properties

Q1: What is the diameter of a spherical water drop if the inside pressure is 15 N/m² and the surface tension is 0.074 N/m.

Q2: The pressure within a bubble of soapy water of 0.05 cm diameter is 5.75 gm/cm² greater than that of the atmosphere. Calculate the surface tension in the soapy water in S.I. units.

Q3: Calculate the capillary effect in millimeters in a glass tube of 4 mm diam., when immersed in (i) water and (ii) in mercury. The temperature of liquid is 20° C and the values of surface tension of water and mercury at this temperature in contact with air are 0.0075 kg/m and 0.052 kg/m respectively. The contact angle for water = 0 and for mercury = 130°.

Q4: To what height will water rise in a glass tube if its diameter is (σ = 0.072 N/m)
 a) 1.50 cm
 b) 2.0 mm

Q5: The space between a square smooth flat plate (50 x 50) cm², and a smooth inclined plane (1:100) is filled with an oil film (S.G. = 0.9) of 0.01 cm thickness. Determine the kinematic viscosity in stokes if the plate is 2.3 kg. The velocity of the plate = 9 cm/sec.
Q6: For the shown figure, Calculate the friction force if the plate area is (2m x3m) and the viscosity is 0.07 poise.

Q7: A piston 11.96 cm diameter and 14 cm long works in a cylinder 12 cm diameter. A lubricating oil which fills the space between them has a viscosity 0.65 poise. Calculate the speed at which the piston will move through the cylinder when an axial load of 0.86 kg is applied. Neglect the inertia of the piston.

Q8: A piece of pipe 30 cm long weighting 1.5 kg and having internal diameter of 5.125 cm is slipped over a vertical shaft 5.0 cm in diameter and allowed to fall under its own weight. Calculate the maximum velocity attained by the felling pipe if a film of oil having viscosity equals 0.5 lb.s/ft² is maintained between the pipe and the shaft.
Q9: A cylinder of 0.12 m radius rotates concentrically inside of a fixed cylinder of 0.122 m radius. Both cylinders are 0.30 m long. Determine the viscosity of the liquid which fills the space between the cylinders if a torque of 1 N.m is required to maintain an angular velocity of 2 rad/s.

Q10: The thrust of a shaft is taken by a collar bearing provided with a forced lubrication system. The lubrication system maintains a film of oil of uniform thickness between the surface of the collar and the bearing. The external and internal diameters of collar are 16 and 12 cms. respectively. The thickness of oil film is 0.02 cms. and coefficient of viscosity is 0.91 poise. Find the horse-power lost in overcoming friction when the shaft is rotated at a speed of 350 r.p.m.
Q1: A tank full of water as shown below. Find the maximum pressure, and h.

![Diagram](image1.png)

Q2: A tank full of water and oil (S.G = 0.80), as shown. Find the pressure at the oil/water interface and the bottom of the tank.

![Diagram](image2.png)
Q3: For the shown figure, find the pressure (P1) if the pressure (P2) = 60 KPa (abs)?

Q4: If the pressure at point (B) = 300 KPa as shown in figure, find the followings:
 a) The height (h) b) The pressure at point (A)?

Q5: For the shown figure, find the height (h)?
Q6: For the shown figure, where is the maximum pressure (P_{AB} or P_{BC})?

Q7: For the shown figure, what is the difference in pressure between points 1,2?

Q8: Pressure gage B is to measure the pressure at point A in a water flow. If the pressure at B is 9 t/m2, estimate the pressure at A.
Q9: For the shown figure, what is the difference in pressure between points A, B?

Q10: For the shown figure, what is the pressure at gauge dial P_g?

Q11: For the shown figure, what is the pressure of air $P_{\text{air}(1)}$?
Q12: For the configuration shown, Calculate the weight of the piston if the gage pressure is 70 KPa.

Q13: For the shown hydraulic press, find the force (F) required to keep the system in equilibrium.
Q1: A vertical triangular gate with water on one side is shown in the figure. Calculate the total resultant force acting on the gate, and locate the center of pressure.

Q2: In the shown figure, the gate holding back the oil is 80 cm high by 120 cm long. If it is held in place only along the bottom edge. What is the necessary resisting moment at that edge.
Q3: In the shown figure, the gate holding back the water is 6 ft wide. If it is held in place only along the bottom edge. What is the necessary resisting moment at that edge.

![Diagram of a gate holding back water with dimensions 13 ft, 8 ft, and 6 ft.] (Wall, Gate 6 ft wide)

Q4: (A) Find the magnitude and line of action of force on each side of the gate. (B) Find the resultant force due to the liquid on both sides of the gate. (C) Determine F to open the gate if it is uniform and weighs 6000 lb.

![Diagram of a gate with dimensions 12 ft, 6 ft, and 3 ft.] (Gate 6 ft wide)

Q5: Gate AB in the shown figure, calculate force F on the gate and its acting position X. If the gate is: (a) semi-circle 1.2 radius (b) rectangle 1.2 x 0.8

![Diagram of a gate with dimensions 6 m, 4 m, 1 m, 1.2 m, 8 m, and r = 1.2 m.] (Oil, $s = 0.82$)
Q6: Find the value of “P” which make the gate in the shown figure just rotate clockwise, the gate is 0.80 m wide.

Q7: Determine the value and location of the horizontal and vertical components of the force due to water acting on curved surface per 3 meter length.

Q8: Determine the horizontal and vertical components of the force acting on radial gate ABC in the shown figure and their lines of action. What F is required to open the gate. Take the weight of the gate W = 2000 kg acting on 1m from O?
Q9: A cylinder barrier (0.30 m) long and (0.60 m) diameter as shown in figure. Determine the magnitude of horizontal and vertical components of the force due to water pressure exerted against the wall.

Q10: Compute the horizontal and vertical components of the hydrostatic force on the hemispherical dome at the bottom of the shown tank.

Q11: The hemispherical dome in the figure weighs 30 kN, is filled with water, and is attached to the floor by six equally spaced bolts. What is the force on each bolt required to hold the dome down.
Q1: Calculate the total forces on the sides and bottom of the container shown in Figure 1 while at rest and when being accelerated vertically upward at $3 \, \text{m/s}^2$. The container is 2.0 m wide. Repeat your calculations for a downward acceleration of $6 \, \text{m/s}^2$.

![Figure 1](image)

Q2: For the shown container in Figure 2, determine the pressure at points A, B, and C if:
- The container moves vertically with a constant linear acceleration of $9.81 \, \text{m/s}^2$.
- The container moves horizontally with a constant linear acceleration of $9.81 \, \text{m/s}^2$.

![Figure 2](image)

Q3: A tank containing water moves horizontally with a constant linear acceleration of $3.5 \, \text{m/s}^2$. The tank is 2.5 m long, 2.5 m high and the depth of water when the tank is at rest is 2.0 m. Calculate:
 a) The angle of the water surface to the horizontal.
 b) The volume of spilled water when the acceleration is increased by 25%.
 c) The force acting on each side if $ax = 12 \, \text{m/s}^2$.
Q4: A tank containing water moves horizontally with a constant linear acceleration of 3.27 m/s\(^2\). The tank is opened at point C as shown in Figure 3. Determine the pressure at points A and B.

![Figure 3](image)

Q5: An open cylindrical tank 2.0 m high and 1.0 m diameter contains 1.5 m of water. If the cylinder rotates about its geometric axis, find the constant angular velocity that can be applied when:
 a) The water just starts spilling over.
 b) The point at the center of the base is just uncovered and the percentage of water left in the tank in this case.

Q6: An open cylindrical tank 1.9 m high and 0.9 m diameter contains 1.45 m of oil (S.G = 0.9). If the cylinder rotates about its geometric axis,
 a) What constant angular velocity can be attained without spilling the oil?
 b) What are the pressure at the center and corner points of the tank bottom when (\(\omega = 0.5\) rad/s).

Q7: An open cylindrical tank 2.0 m high and 1.0 m diameter is full of water. If the cylinder is rotated with an angular velocity of 2.5 rev/s, how much of the bottom of the tank is uncovered?

Q8: A closed cylindrical container, 0.4 m diameter and 0.8 m high, two third of its height is filled with oil (S.G = 0.85). The container is rotated about its vertical axis. Determine the speed of rotation when:
 a) The oil just starts touching the lid.
 b) The point at the center of the base is just clear of oil.
Q9: A closed cylindrical tank with the air space subjected to a pressure of 14.8 psi. The tank is 1.9 m high and 0.9 m diameter, contains 1.45 m of oil (S.G = 0.9). If the cylinder rotates about its geometric axis,
 a) When the angular velocity is 10 rad/s, what are the pressure in bar at the center and corner points of the tank bottom.
 b) At what speed must the tank be rotated in order that the center of the bottom has zero depth?

Q10: A closed cylindrical tank 2 ft diameter is completely filled with water. If the tank is rotated at 1200 rpm, what increase in pressure would occur at the top of the tank at that case?
Sheet (6) – Buoyancy & Floatation

Q1: Will a beam of S.G. = 0.65 and length 1500 mm long with a cross section 136 mm wide and 96 mm height float in stable equilibrium in water with two sides horizontal?

Q2: A floating body 100 m wide and 150 m long has a gross weight of 60,000 ton. Its center of gravity is 0.5 m above the water surface. Find the metacentric height and the restoring couple when the body is given a tilt as shown 0.5m.

Q3: A ship displacing 1000 ton has a horizontal cross-section at water-line as shown in the figure, its center of bouyancy is 6 ft below water surface and its center of gravity is 1 ft below the water surface. Determine its metacentric height for rolling (about y-axis) and for pitching (about x-axis).

Q4: An empty tank rectangular in plan (with all sides closed) is 12.5m long, and its cross section 0.70 m width x 0.60 m height. If the sheet metal weights 363 N/m² of the surface, and the tank is allowed to float in fresh water (Specific weight 9.81 KN/m³) with the 0.60m wedge vertical. Show whether the tank is stable or not?
Q5: A cylindrical buoy 1.8 m diam., 1.2 m high and weighing 10 KN is in sea water of density 1025 kg/m³. Its center of gravity is 0.45 m from the bottom. If a load of 2 KN is placed on the top; find the maximum height of the C.G. of this load above the bottom if the buoy is to remain in stable equilibrium.

Q6: A spherical Buoy (floating ball) has a 0.50 m in diameter, weights 500 N, and is anchored to the seafloor with a cable. Although the buoy normally floats on the surface, at certain times the water depth increases so that the buoy is completely immersed. **What is the tension on the cable?**

![Diagram of buoy and cable](image)

Q7: A wooden cylinder 60 cm in diameter, S.G. = 0.50 has a concrete cylinder 60 cm long of the same diameter, S.G. = 2.50, attached to one end. Determine the length of wooden cylinder for the system to float in stable equilibrium with its axis vertical.

Q8: A right solid cone with apex angle equal to 60° is of density k relative to that of the liquid in which it floats with apex downwards. Determine what range of k is compatible with stable equilibrium.

Q9: A cylindrical buoy is 5 feet diameter and 6 feet high. It weighs 1500 Ib and its C.G. is 2.5 feet above the base and is on the axis. **Show** that the buoy will not float with its axis vertical in sea water. If one end of a vertical chain is fastened to the centre of the base, **find** the tension in the chain in order that the buoy may just float with its axis vertical.
Q1: An inclined pipe carrying water gradually changes from 10 cm at A to 40 cm at B which is 5.00 m vertically above A. If the pressure at A and B are respectively 0.70 kg/cm² and 0.5 kg/cm² and the discharge is 150 liters/sec. Determine a) the direction of flow b) the head loss between the sections.

Q2: A cylindrical tank contains air, oil, and water as shown. A pressure of 6 lb/in² is maintained on the oil surface. What is the velocity of the water leaving the 1.0-inch diameter pipe (neglect the kinetic energy of the fluids in the tank above elevation A).

Q3: The losses in the shown figure equals 3(V²/2g)ft, when H is 20 ft. What is the discharge passing in the pipe? Draw the TEL and the HGL.

Q4: To what height will water rise in tubes A and B? (P = 25 Kpa, Q = 60)