Tenth of Ramadan City
Higher Technological Institute
Civil Engineering Department

Programming for Civil Eng.
Dr./ Ahmed Azmy

Sheet (1)

1. Write the following arithmetic expressions in Fortran form:
(a) $x=\frac{a^{2}+b^{2}+a \times b}{1+\frac{a}{a+b}}$
(c) $p=8\left(\sqrt[3]{a^{2}}+\sqrt{a^{2}}\right)$
(b) $V=(a-2 b)^{3} \cdot(3 a+b)^{2}$
(d) $z=a^{b^{2}}+b^{a^{2}}$
2. Determine the results of the following Fortran expressions:

$$
\begin{array}{lll}
\mathrm{A}=0 & \mathrm{~B}=10 & \mathrm{C}=0.5
\end{array}
$$

(a) $X=A * C+(B * C) * * 2-\log _{(10)} 10$
(b) $L=B * 2 * 3 / A * * 2-1$
(c) $A=A * C *(10 / B)$
(d) $D=(A+B) * C / B * C$
(e) $F=A+B * C / B * C$
3. State if these variables names are corrected or not, and for correct ones state the type, and for incorrect suggest a correction and type:

BE
Y
23A
M-N

XY800ABC
A B
A*A

Tenth of Ramadan City	Programming for Civil Eng.
Higher Technological Institute	Dr./ Ahmed Azmy
Civil Engineering Department	CS 199

4. Find the value of these problems:

- 3*2+1
-3+1*2
- $2 * * 2-4 * 25+3 / 2$
-2.0/1
-3/2
-3.0/2
- $15 / 3 * 2-21 / 7 / 3+1$
- $28 / 2 * * 2+5$
- 3.0/2.0
-3*3-27/3

Tenth of Ramadan City	Programming for Civil Eng.
Higher Technological Institute	Dr./ Ahmed Azmy
Civil Engineering Department	CS 199

Sheet (2)

Write a program that reads three real numbers and assigns the appropriate value of true or false to the following logical variables:

TRIANG: true if three real numbers can represent lengths of the sides of a triangle, and false otherwise. (The sum of any two of the numbers must be greater than the third).

EQUIL: true TRIANG is true and the triangle is equilateral (three sides are equal).
ISOS: true TRIANG is true and the triangle is isosceles (at least two sides are equal).

SCAL: true TRIANG is true and the triangle is scalene (no two sides are equal).

The output from your program should have a format like the following:
FOR $\mathrm{A}=2.000, \mathrm{~B}=3.000, \mathrm{C}=3.000$
TRIANG IS: T
EQUIL IS: F
ISOS IS: T
SCAL IS: F

Tenth of Ramadan City	Programming for Civil Eng.
Higher Technological Institute	Dr./ Ahmed Azmy
Civil Engineering Department	CS 199

Sheet (3)

1. Write a program to compute moments of inertia ($\mathrm{I}_{\mathrm{x}} \& \mathrm{I}_{\mathrm{y}}$) of rectangular sections of width (B) and height (D).
2. Write a program to compute the area of a triangle from the lengths of its members by using the following equation :

$$
A=\sqrt{P(P-A)(P-B)(P-C)}
$$

Where: $\mathrm{p}=$ half of parameter, and $\quad \mathrm{A}, \mathrm{B}, \mathrm{C}=$ lengths of members.
3. Write a program to calculate the maximum bending moment, maximum shear force, and maximum deflection in a simple beam subjected to uniformly distributed load (w). Where: $\mathrm{L}=$ span of the beam
b.t = cross section of the beam
$\mathrm{E}=$ modulus of elasticity of beam material
4. If the member A, B and C of a triangle are given write a computer program to show if the angle in front of the member C is a right angle or greater than or less of 90 , let the output be:

If the angle $=90$ let computer write (C is a right angle).
If the angle >90 let computer write (C is >90).
If the angle <90 let computer write (C is <90).

Sheet (4)

1. Write a segment of a program to compute the following series:

$$
y=1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\cdots
$$

Neglecting all terms less than 10^{-3}
2. Write a program to compute the area under the curve using Simpson's rule:

$$
A=\frac{x}{3}\left[y_{o}+2\left(y_{2}+y_{4}+\cdots+y_{n-2}\right)+4\left(y_{1}+y_{3}+\cdots+y_{n-1}\right)+y_{n}\right]
$$

Where:
n is even number
x internal distance

3. Write a program to compute the product of matrices

$$
C(m * p)=A(m * n) \times B(n * p)
$$

4. Write a program to compute area of plaster for any number of rooms, Given:
($\mathrm{L} \& \mathrm{~W}$) Length and width of the room/s.
($\mathrm{nd} \& \mathrm{nw}$) Number of doors and number of windows.
(Ad \& Aw) Areas of doors and windows.
(h) Height of floor.

Output should take the form:
$\begin{array}{cccccccc}\text { Room ID } & \text { no. } & \text { Dim. } & \text { H } & \text { nd } & \text { Ad } & \text { nw } & \text { Aw } \\ -- & -- & --*- & -- & -- & -- & -- & --\end{array}$
Blank line
Area of wall's plaster $=---m^{2}$
Area of roof's plaster $=---m^{2}$

Tenth of Ramadan City	Programming for Civil Eng.
Higher Technological Institute	Dr./ Ahmed Azmy
Civil Engineering Department	CS 199

Sheet (5)

Write a complete FORTRAN program as if you are writing it in a file in the computer to read two data and variable X and Y , then calculate the following function:
$F(X, Y)=\left\{\begin{array}{lcccc}1+\sqrt{1+X^{2}}+\frac{X}{y} & \text { if } & X<5 & \text { and } & Y>0 \\ 1-\sqrt{1+X^{2}}+X^{y} & \text { if } & X<5 & \text { and } & y<0 \\ 5 & \text { if } & \text { otherwise } & \end{array}\right.$

Then print the value of the function.

Tenth of Ramadan City Higher Technological Institute Civil Engineering Department	Programming for Civil Eng. Dr./ Ahmed Azmy CS 199	
	Sheet (6)	

Write a program that reads values for the coefficients $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{E}$, and F of the equations: $A x+B y=c \quad \& \quad D x+E y=F \quad$ of two straight lines.
Then determine whether the lines are parallel (slopes are equal) or intersect, and if they intersect, if the lines are perpendicular (product of slopes $=-1$)

The output should be as follows:
Lines are parallel: Yes or No
Lines are intersecting: Yes or No
Lines are perpendicular: Yes or No

