
Spring 2018

Lecture 3
FORTRAN Basics

CS 199 Computer Programming

Objectives

• In this chapter, you will learn:

– To be able to write simple computer programs in FORTRAN.

– To be able to use simple input and output statements.

– To become familiar with fundamental data types.

Fortran Basics :
• A Fortran program is just a sequence of lines of text. The text has to follow

a certain syntax to be a valid Fortran program. We start by looking at a

simple example:

c this a program that print hello message

write (*,*)'Hello world!'

END

Your Typical Program

PROGRAM MYPROGRAM

END

Program Options

Declaration of Variables

MAIN CODE

Your Typical Program

PROGRAM MYPROGRAM

END

Program Options

Declaration of Variables

MAIN CODE

This line identifies the
code as a program
(instead of, say, a
subroutine) and gives it
the name
MYPROGRAM.

Your Typical Program

PROGRAM MYPROGRAM

END

Program Options

Declaration of Variables

MAIN CODE

All variables used
in the code have to
be declared at the
top, before any of
the main code is
run.

Your Typical Program

PROGRAM MYPROGRAM

END

Program Options

Declaration of Variables

MAIN CODE

Here is where the
magic happens.

Your Typical Program

PROGRAM MYPROGRAM

END

Program Options

Declaration of Variables

MAIN CODE

This identifies the
end of the program

Basic Elements of Fortran
• A statement too long to fit in a single line may be continued on the next line by

ending the current line with an & (ampersand). e. g.

output = input1 + input2 ! sum the inputs

output = input1 & ! Also, sum the inputs

+ input2

• A line with a c, C, *, d, D, or! in column one is a comment line. The d, D, and! are
nonstandard.

• One can use labels in some statements. A label can be any number between 1 and
99999.

Variables and Assignments

• Variables are like small blackboards

– We can write a number on them

– We can change the number

– We can erase the number

• Variable are declared as follows:

variable_type :: variable_name [=< value >]

Naming
• must be unique within the program;

• must start with a letter;

• may use only letters, digits and the underscore;

• may not be longer than 31 characters.

name Valid/not valid reason

A1 Valid

1a Not valid Starts with number

Atoz Valid

A_z Valid

A-z Not valid Contains -

Types of Data
There are different types of data:

• Integer: numbers that have no decimal part

– Integer :: v

– Integer ::y=8

• Real: numbers that can contain decimal parts

– real :: v

– real ::y=8.9

• Complex: variables that can take on complex values

– complex :: v

– complex ::y=(6,7)

• Character: is used to store strings of characters. To hold a string of characters we need to know
how many characters in the string

– character ::st1*10='kkk'

– character (len=10) ::uu="kk"

Undeclared variable
• Can you imagine what happen if you forget to declare a variable

• Any undeclared variable has an implicit type:

– if the first letter of its name is I, J, K, L, M or N then the type is INTEGER;

– if it is any other letter then the type is REAL.

• Implicit typing is potentially very dangerous and should always be turned

off by adding: IMPLICIT NONE

• Put ‘implicit none’ at the beginning

– Right after the ‘program’ line

– Prevents implicit variable declaration

Input and output

• Output statement:
–write: allows you to output to the default output device using a default format:

write(*,*)<list>
– Example:

write (*,*) n1
write (*,*) n2,ne

• input statement:
–Read: allows you to input from the default input device using a default format:

Read(*,*)<list>
– Example:

Read (*,*) n1
Read (*,*) n2,ne

14

Input / Output

