CS 199 Computer Programming

Spring 2018
 Lecture 4
 FORTRAN Operators

Objectives

- In this chapter, you will learn:
- To be able to use arithmetic operators.
- To understand the precedence of arithmetic operators.

Structure of a Fortran Program

Keyboard and Screen I/O

Arithmetic

- Arithmetic is performed with operators.
- Arithmetic operators are listed in following table

FORTRAN operation	Arithmetic operator	Algebraic expression	FORTRAN expression
Addition	+	$f+7$	$\mathrm{f}+7$
Subtraction	-	$p-c$	$p-c$
Multiplication	*	bm	b * m
Division	/	x / y	x / y
expontation	**	r^{s}	r ** s

Mathematical formula	FORTRAN Expression
$b^{2}-4 a c$	$\mathrm{~b}^{* *} 2-4^{*} \mathrm{a}^{*} \mathrm{c}$ or $\mathrm{b}^{*} \mathrm{~b}-4^{*} \mathrm{a}^{*} \mathrm{c}$
$\mathrm{x}(\mathrm{y}+\mathrm{z})$	$\mathrm{x}^{*}(\mathrm{y}+\mathrm{z})$
$\frac{a+b}{a-c}$	$(\mathrm{a}+\mathrm{b}) /(\mathrm{a}-\mathrm{c})$
$\frac{1}{\sqrt{x}+x+3}$	$1 /\left(\mathrm{x}^{* *} 0.5+\mathrm{x}+3\right)$

Results of Arithmetic operators

- Arithmetic operators can be used with any numeric type.
- An operand is a number or variable used by the operator e.g.
- integer1 + integer2
- + is operator
- integer 1 and integer2 are operands
- The result of an expression is always of the higher type, for example:
- INTEGER * REAL gives REAL , (3*2.0 is 6.0)
- REAL * INTEGER gives REAL , (3.0*2 is 6.0)
- COMPLEX $*<$ anytype $>$ gives COMPLEX

Mixed Type Assignment

\square Problems can occur with mixed-type arithmetic. The rules for type conversion are given below:

- INTEGER = REAL
\checkmark The RHS is evaluated, truncated (all the decimal places removed) then assigned to the LHS.
- REAL = INTEGER
\checkmark The RHS is evaluated, promoted to be REAL (approximately) and then assigned to the LHS.
\square For example:
REAL :: $\mathrm{a}=1.1, \mathrm{~b}=0.1$
INTEGER :: $\mathrm{i}, \mathrm{j}, \mathrm{k}$
$\mathrm{i}=3.9 \quad$! i will be 3
$j=-0.9 \quad!j$ will be 0
$\mathrm{k}=\mathrm{a}-\mathrm{b} \quad \mathrm{l} \mathrm{k}$ will be $\mathbf{1}$

Integer Division

\square Division of two integers produces an integer result by truncation (towards zero). Consider:

- REAL :: a, b, c, d, e
$-\mathrm{a}=1999 / 1000$
$-\mathrm{b}=-1999 / 1000$
$-\mathrm{c}=(1999+1) / 1000$
$-\mathrm{d}=1999.0 / 1000$
$-\mathrm{e}=1999 / 1000.0$
! LHS a is (about) 1.000
! LHS b is (about) - $\mathbf{1 . 0 0 0}$
! LHS c is (about) 2.000
! LHS d is (about) 1.999
! LHS e is (about) 1.999

Rules of operator precedence

Some arithmetic operators act before others (e.g., multiplication before addition)

Opertors	Opeertions	Order of evaluation (precedence)
()	Parentheses	Evaluated first. If the parentheses are nested, the expression in the innermost pair is evaluated first. If there are several pairs of parentheses "on the same level" (i.e., not nested), they are evaluated left to right.
$\boldsymbol{* *}$	Expontation	Evaluated second.
$\boldsymbol{*}$ or /	Multiplication Division	Evaluated third. If there are several, they are evaluated left to right.
$\boldsymbol{+}$ or -	Addition Subtraction	Evaluated last. If there are several, they are evaluated left to right.

Operator Precedence

An example to understand operator precedence.
$20-4 / 5 * 2+3 * 5 / 2$

$$
\begin{array}{rrrr}
(4 / 5) & 0.8 \rightarrow 0 & & \\
((4 / 5) * 2) & 0 * 2 \rightarrow 0 & & \\
((4 / 5) * 2) & (3 * 5) & 15 \\
((4 / 5) * 2) & ((3 * 5) / 4) & 3.75 \rightarrow 3 \\
(20-((4 / 5) * 2)) & ((3 * 5) / 4) & 20-0 \rightarrow 20 \\
(20-((4 / 5) & * 2))+((3 * 5) / 4) & 20+3 \rightarrow 23
\end{array}
$$

Math functions

- Allow the programmer to perform common mathematical calculations
- Example

Write(*,*) sqrt(900.0);
-Calls the sqrt (square root) function.
-The preceding statement would print 30
-The sqrt function takes an argument of type real

- And returns a result of type real
- Function call arguments can be
${ }_{-}$Constants sqrt(4.0)
- Variables $\operatorname{sqrt(x)}$
- Expressions $\mathbf{s q r t}(\mathbf{s q r t}(x)), \operatorname{sqrt}(\mathbf{3 y}+6)$

Math functions

function	description	example
$\operatorname{Cos}(\mathrm{x})$	cosine where x is in radians	$\operatorname{Cos}(0.0)=1.000$
$\operatorname{Sin}(\mathrm{x})$	sine where x is in radians	$\sin (0.0)=0.000$
$\operatorname{Tan}(\mathrm{x})$	tangent where x is in radian	$\tan (0.0)=0.000$
$\log (\mathrm{x})$	natural logarithm of x	$\log (100.0)=4.60517025$
$\log 10(\mathrm{x})$	logarithm base 10 of x	$\log 10(100.0)=2.00$
$\operatorname{Sqrt}(\mathrm{x})$	the square root of x	$\operatorname{Sqrt}(9.0)=3.000$
$\operatorname{Abs}(\mathrm{x})$	absolute value	$\operatorname{Abs}(-9)=9$
$\operatorname{MOD}(\mathrm{a}, \mathrm{p})$	remainder function	$\operatorname{Mod}(14,4)=2$
$\operatorname{CEILING}(\mathrm{a})$	smallest $\operatorname{lNTEGER}$ greater than or equal to REAL number	$\operatorname{Ceiling}(2.3)=3$

FLOOR(a) biggest INTEGER less than or equal to REAL number Floor(2.3)=2

Example 1

Write program that will read the two sides of a rectangle and calculate its area.

```
integer :: 1,w,a
write(*,*) 'enter the length'
read (*,*)1
write(*,*) 'enter the width'
read (*,*) w
a=1*W
write (*,*)'the area = ',a
end
```


Example 2

Write an algorithm and draw a flowchart that will calculate the roots of a quadratic equation $a x^{2}+b x+c=0$

```
integer :: a,b,c
real :: d,x1,x2
read (*,*) a,b,c
d= sqrt(b**2-4.0*a*c)
x1= (-b+d)/(2*a)
x2=(-b-d)/(2*a)
write (*,*)'the first root ` ,xl
write (*,*) 'the second root ` ,x2
end
```

C6:- Project Console

