CS 199 Computer Programming

Spring 2018 Lecture 4 FORTRAN Operators

Objectives

- In this chapter, you will learn:
 - To be able to use arithmetic operators.
 - To understand the precedence of arithmetic operators.

Arithmetic

• Arithmetic is performed with operators.

• Arithmetic operators are listed in following table

FORTRAN operation	Arithmetic operator	Algebraic expression	FORTRAN expression
Addition	+	f + 7	f + 7
Subtraction	-	p-c	р - с
Multiplication	*	bm	b * m
D · · ·			
Division	/	x / y	х / у

Mathematical formula	FORTRAN Expression
$b^2 - 4ac$	b**2-4*a*c or b*b -4*a*c
x(y+z)	$x^*(y+z)$
$\frac{a+b}{a-c}$	(a+b)/(a-c)
$\frac{1}{\sqrt{x} + x + 3}$	$1/(x^{**}0.5+x+3)$

Results of Arithmetic operators

- Arithmetic operators can be used with any numeric type.
- An **operand** is a number or variable used by the operator e.g.
 - -integer1 + integer2
 - + is operator
 - integer1 and integer2 are operands
- The result of an expression is always of the higher type, for example:
 - INTEGER * REAL gives REAL, (3*2.0 is 6.0)
 - REAL * INTEGER gives REAL, (3.0*2 is 6.0)
 - COMPLEX * < anytype > gives COMPLEX

Mixed Type Assignment

Problems can occur with mixed-type arithmetic. The rules for type conversion are given below:

 \circ INTEGER = REAL

✓ The RHS is evaluated, truncated (all the decimal places removed) then assigned to the LHS.

```
\circ REAL = INTEGER
```

✓ The RHS is evaluated, promoted to be REAL (approximately) and then assigned to the LHS.

□For example:

REAL :: a = 1.1, b = 0.1

INTEGER :: i, j, k

! i will be 3
! j will be 0

 $\mathbf{k} = \mathbf{a} - \mathbf{b} \qquad \qquad \mathbf{!} \mathbf{k} \text{ will be 1}$

Integer Division

Division of two integers produces an integer result by truncation (towards) zero). Consider:

- REAL :: a, b, c, d, e
- ! LHS a is (about) 1.000 -a = 1999/1000
- -b = -1999/1000
- -c = (1999+1)/1000
- -d = 1999.0/1000
- -e = 1999/1000.0

- - ! LHS b is (about) -1.000
- ! LHS c is (about) 2.000
- ! LHS d is (about) 1.999
- ! LHS e is (about) 1.999

Rules of operator precedence

Some arithmetic operators act before others (e.g., multiplication before addition)

Opertors	Opeertions	Order of evaluation (precedence)
()	Parentheses	Evaluated first. If the parentheses are nested, the expression in the innermost pair is evaluated first. If there are several pairs of parentheses "on the same level" (i.e., not nested), they are evaluated left to right.
**	Expontation	Evaluated second.
* or /	Multiplication Division	Evaluated third. If there are several, they are evaluated left to right.
+ or -	Addition Subtraction	Evaluated last. If there are several, they are evaluated left to right.

Operator Precedence

An example to understand operator precedence.

20 - 4 / 5 * 2 + 3 * 5 / 2

(4	/	5)		0.8	\rightarrow	0						
((4	/	5)	*	2)	0	*2→	0					
((4	/	5)	*	2)		(3	*	5)			15	
((4	/	5)	*	2)		((3	*	5)	/	4)	3.75→	3
(20 -((4	/	5)	*	2))		((3	*	5)	/	4)	20-0→:	20
(20 -((4	1	5)	*	2))	+	((3	*	5)	1	4)	20+3 → :	23

Math functions

• Allow the programmer to perform common mathematical calculations

• Example

- Write(*,*) sqrt(900.0);
- -Calls the **sqrt** (square root) function.
- -The preceding statement would print 30
- -The sqrt function takes an argument of type real
- -And returns a result of type real

• Function call arguments can be

- -Constants sqrt(4.0)
- Variables sqrt(x)
- Expressions sqrt(sqrt(x)), sqrt(3y + 6)

Math functions

function	description	example		
Cos(x)	cosine where x is in radians	Cos(0.0)=1.000		
Sin(x)	sine where x is in radians	sin(0.0)=0.000		
Tan(x)	tangent where x is in radian	tan(0.0)=0.000		
Log(x)	natural logarithm of x	Log(100.0)=4.60517025		
Log10(x)	logarithm base 10 of x	Log10(100.0)=2.00		
Sqrt(x)	the square root of x	Sqrt(9.0)=3.000		
Abs(x)	absolute value	Abs(-9)=9		
MOD(a,p)	remainder function	Mod(14,4)=2		
CEILING(a)	smallest INTEGER greater than or equal to REAL number	Ceiling(2.3)=3		
FLOOR(a)	biggest INTEGER less than or equal to REAL number	Floor(2.3)=2		

Example1

Write program that will read the two sides of a rectangle and calculate its area.

Example 2

