

Question (1):

- a) What are the objectives of traffic volume counts?
- b) What are the objectives of travel time and delay studies?
- c) What are the expansion factors?
- d) What are the flow density relationships according to greensheild and greenberg models (using sketches only)

Question (2):

Using the spot-speed data below, draw the histogram frequency distribution and cumulative percentage distribution for each set of data and determine: (a) average speed, (b) 85th percentile speed, (c) 15th percentile speed, (d) modal speed, (e) median, and (f) pace.

33000	- 12		133	3777	25-2		11999	100000	28	3,23		27.45
33	35	36	36	40	38	35	30	30	38	39	35	36
35	34	33	31	36	35	33	35	41	35 k	m/h		

Question (3):

The traffic volume data collected on a roadway section on a Monday of the month of Mars were:

Hour	Volume
7:00 - 8:00 am	450
8:00 - 9:00 am	565
9:00 - 10:00 am	670
10:00 - 11:00 am	640
11:00 - 12:00 noon	600

Estimate the AADT if the expansion factors determined from a similar continuous counting station are: HEF

11001	1 144	
	7:00 – 8:00 am	29.00
1	8:00 – 9:00 am	22.05
1	9:00 – 10:00 am	18.80
t	10:00 – 11:00 am	17.10
1	11:00 - 12:00 noon	18.52

Question (4):

The data shown below were obtained from a rural highway. Use regression analysis to fit these data to the Greenshields model and determine:

- (a) Mean free speed
- (b) Jam density
- Capacity (c)
- (d)Speed at maximum flow

Hour

Speed (km/h)	22.8	38.8	48.8	64.5	81.4	88.5
Density (v/km)	137	113	88	66	32	24