Design of Earth-Rested and Underground Tanks

By: Dr.Islam M. El-Habbal

2011

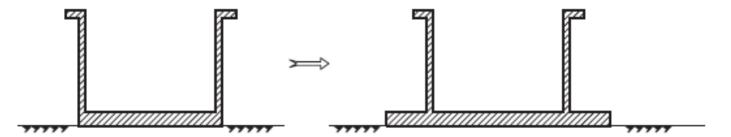
Ground tanks Earth-Rested Underground Tanks or

Stability checks for Ground and Underground tanks

1- Check bearing capacity for rested and underground tanks

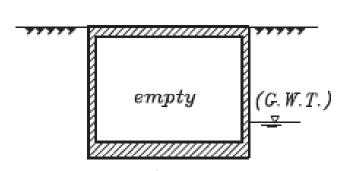
$$f_{gross} = \frac{\Sigma W}{A}$$

where

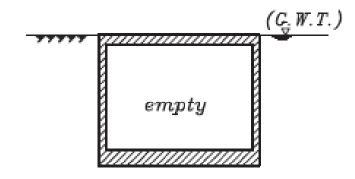

 $\Sigma W = weight \ of \ floor \ slabs, \ walls, \ cover \ slabs, \ beams \ and \ water$ $A = area \ of \ the \ base \ of \ the \ tank$

if
$$f_{aross} \le$$
 bearing capacity of soil \Longrightarrow safe

ـ ملحوظة


if $f_{gross} >$ bearing capacity of soil \implies unsafe

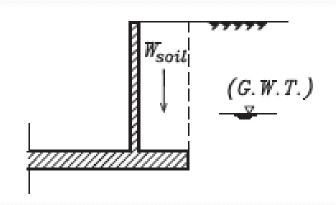
>=> we have to increase dimensions of floor



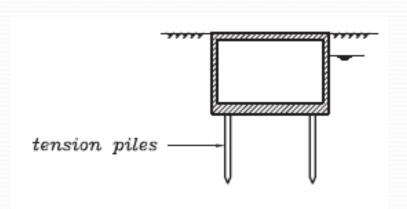
2- Check uplift for underground tanks

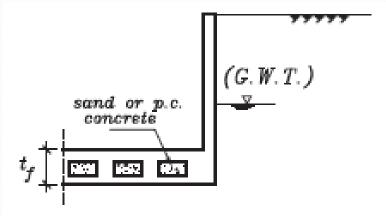
يجب عمل هذا (check) لتجنب حدوث (uplift) للخزان في حالة وجود مياه جوفية (ground water table) و يكون كالاتي

$$F.O.S. = \frac{f_{gross}}{\gamma_w h} < 1.5$$
يوجد احتمال لارتفاع منسوب (G.W.T.)



$$F.O.S. = rac{f_{gross}}{\gamma_w h} < 1.2$$
 لا يوجد احتمال لارتفاع منسوب ($G.W.T.$)


حيث (f_{gross}) هو الاجهاد المنقول للتربة بدون حساب وزن المام (empty tank) حتى تكون (critical case)


If Uplift check is unsafe:

1. Increase base length to add more soil weight

- 2. Increase base thickness to add more concrete weight
- Increase base thickness and perform holes inside base to be infilled by sand or plain concrete.
- 4. Use tension piles in case of high uplift pressure.

Design of Underground Tank

Cases of loading for underground tanks

During Construction

full

Case of Water pressure only

During Repair

Case of Earth pressure only

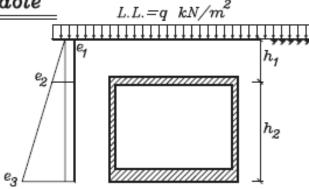
Steps of analysis of underground tanks:

1 - Calculate (t_w, t_f) of the tank according to:

$$t_w = \frac{L_s}{16} \nleq 250mm$$
 , $t_f = \frac{L_s}{12} \nleq 400mm$

$$\frac{2 - Calculate (f_g)}{= \frac{\sum W}{A}}$$

3- Calculate
$$(f_{net})$$
 $f_{net} = f_g - direct load$

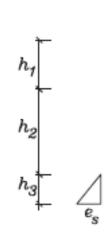

5- Calculate earth pressure

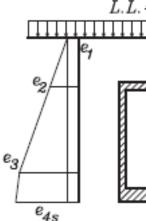
-Case of no groud water table

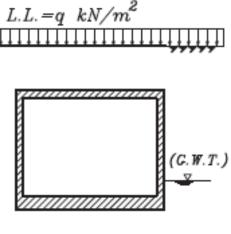
$$e_1 = k_a q$$

$$e_2 = e_1 + k_a \gamma_{soil} h_1$$

$$e_3 = e_2 + k_a \gamma_{soil} h_2$$

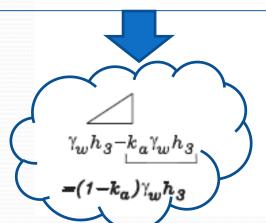


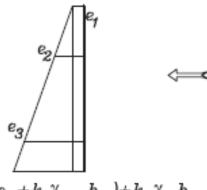

$$k_a=rac{1}{3}$$
 , $\gamma_{soil}=18$ kN/m^3 الم يذكر خلاف ذلك

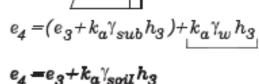

$$q = surcharge on ground level (kN/m^2)$$

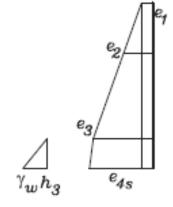
-Case of groud water table

$$e_{1} = k_{a} q$$
 $e_{2} = e_{1} + k_{a} \gamma_{soil} h_{1}$
 $e_{3} = e_{2} + k_{a} \gamma_{soil} h_{2}$
 $e_{4s} = e_{3} + k_{a} \gamma_{sub} h_{3}$
 $e_{s} = \gamma_{w} h_{3}$

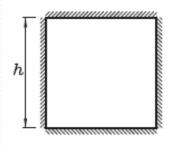





where

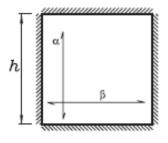

$$k_a\!=\!\!\frac{1}{3}$$
 , $\gamma_{soil}\!=\!18$ kN/m^3 , $\gamma_w\!=\!10$ kN/m^3
$$\gamma_{sub}\!=\!\gamma_{soil}\,-\,\gamma_w\!=\!8$$
 kN/m^3

Completely in Vertical Direction



عادة یکون مثلث الماء علی ارتفاع $\frac{h}{4}$ للحائط و بالتالی فانه یذهب کله فی الاتجاه الراسی اما فی حالة ان مثلث الماء لیس علی ارتفاع $\frac{h}{4}$ فاننا نقوم بتقریبه کالاتی حتی یسهل التعامل معه \cdot

if $h_3 \le h/2$


$$h_3 \leq \frac{h}{2} \left[\sum_{(1-k_a)\gamma_w h_3} \right]$$

يذهب كله في الاتجاه الراسي

$$y = \frac{h}{4} + \frac{h}{h_3(1-k_a)\gamma_w h_3}$$

$$\frac{h_3(1-k_a)\gamma_w h_3}{(h/4)}$$

 $if \ h_3 > \ h/2$

$$h_3 > \frac{h}{2}$$
 $(1-k_a)\gamma_w h_3$

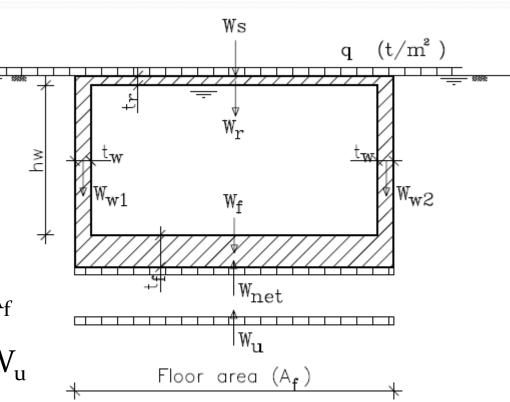
$$h = \frac{1}{\alpha e \beta e} + \frac{h}{4}$$

$$e = \frac{h_3(1 - k_\alpha)\gamma_w h_3}{h}$$

نقوم بتوزيعه بنسبة (α,β)على الحائط

Loads on Tank Floor

$$W_s = q * Area of roof$$


$$W_r = \gamma_c * t_r * Area of roof$$

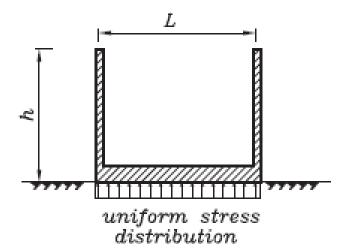
$$W_{wi} = \gamma_c * t_w * h_w * L_{wi}$$

$$W_{net} = (W_s + W_r + \Sigma W_{wi}) / A_f$$

Design floor load =
$$W_{net} + W_u$$

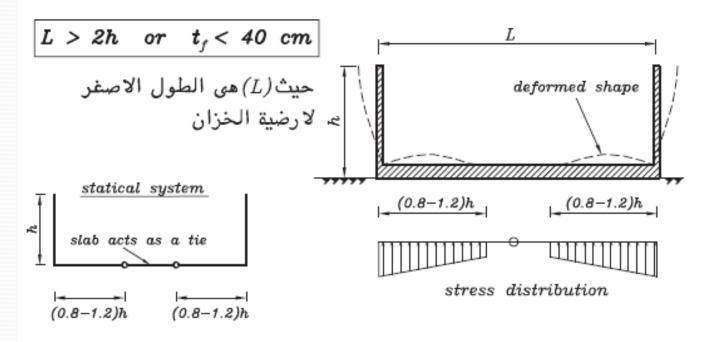
Where, $W_u = Uplift pressure$

N.B.: Loads directly supported by soil won't be included in calculations (Water weight, and floor weight)


Earth-Rested Tanks

1 — Tanks on rigid foundation

حيث نفترض ان توزيع الاجهادات منتظم على التربة و ذلك على كامل مسطح ارضية الخزان و يشترط في هذا الفرض ما يلى


 $L \leq 2h$, $t_f \geq 40$ cm

حيث(L)هى الطول الاصغر لارضية الخزان

2- Tanks on elastic foundation or tanks on compressible soil

حيث يكون توزيع الاجهادات غير منتظم على التربة حيث تكون الاجهادات كبيرة عند اطراف البلاطة و تقل كلما اتجهنا للداخل و يحدث ذلك في حالة ان

و بالتالى فان الجزء المتاثر بالعزوم المنقولة من الحائط للارضية يكون عند مسافة تتراوح بين 1.2)h اما باقى البلاطة فيكون عليها فقط (axial tension) المنقولة من الحائط للارضية ·