H.T.I

HIGHER
TECHNOLOGICAL
INSTITUTE
ijoc

HYDRAULICS (2)

DR. AMIR M. MOBASHER

HYDRAULICS (2)

Contents

1. Flow through Pipes 2
2. Pipe Networks 47
3. Pumps \& Turbines 67
4. Momentum Principle 114
5. Assignments. 126

CHAPTER 1

FLOW THROUGH PIPES

1.1 Introduction:

Any water conveying system may include the following elements:
$>$ pipes (in series, pipes in parallel)
$>$ elbows
$>$ valves
$>$ other devices
If all elements are connected in series, the arrangement is known as a "pipeline". Otherwise, it is known as a "pipe network".

1.2 Difference between open-channel flow and the pipe flow:

Pipe flow السريان فى الأنابيب المغلقة :

$>$ The pipe is completely filled with the fluid being transported.
$>$ The main driving force is likely to be a pressure gradient along the pipe. يحدث السريان عادة تحت ضغط ناتج من طلمبة أو خزان.

Open-channel flow السريـن فى القتوات المفتوحة:

$>$ Fluid flows without completely filling the pipe.
$>$ Gravity alone is the driving force, the fluid flows down a hill.
يكون الضغط عند ای نقطة على السطح الحر مساويا للضغط الجوى، ويحدث هذا السريان تحت تأثير الجاذبية الأرضية.

1.3 Types of Flow \%نمواع النسريان

[] Steady and Unsteady flow السريان المستقق وغير المستتقر :
The flow parameters such as velocity (v), pressure (P) and density (r) of a fluid flow are independent of time in a steady flow. In unsteady flow they are independent.

For a steady flow

$$
(\partial v / \partial t)_{x_{o}, y_{o}, z_{o}}=0
$$

For an unsteady flow

$$
(\partial v / \partial t)_{x_{o}, y_{o}, z_{o}} \neq 0
$$

[] Uniform and non-uniform flow السريان المنتظم وغير المنتظم:

A flow is uniform if the flow characteristics at any given instant remain the same at different points in the direction of flow, otherwise it is termed as non-uniform flow.

For a uniform flow $\quad(\partial v / \partial s)_{t_{o}}=0$
For a non-uniform flow $\quad(\partial v / \partial s)_{t_{o}} \neq 0$

فى السريان المستقر لا تتغير السر عة أو الضغط عند نقطة محددة مع الزمن. فى السريان المنتظ لا تتغير السر عة و شكل السريان من نقطة إلى أخرى.

Examples of flow types:

Steady uniform flow: Steady non-uniform flow:
flowrate (Q) and section area (A) $\quad \mathrm{Q}=$ constant, $\mathrm{A}=\mathrm{A}(\mathrm{x})$.
are constant

[.السريان الطبقى (اللزج) والسريان المضطرب Laminar and turbulent flow:

Laminar flow اللسريان الطققى (اللزج)

The fluid particles move along smooth well defined path or streamlines that are parallel, thus particles move in laminas or layers, smoothly sliding over each other

Turbulent flow اللريـن المضطرب

The fluid particles do not move in orderly manner and they occupy different relative positions in successive cross-sections.
There is a small fluctuation in magnitude and direction of the velocity of the fluid particles

Transitional flow اللسريان الانتقالى

The flow occurs between laminar and turbulent flow

وقد وُجد من النجارب المعملية أن الفاقد فى الضاغط يعتمد على نوع السريان هل هو طبقى أم مضطرب، ويتحدد نوع السريان تبعا لسلوك الجزيئات أثنثاء حركتها.

Reynolds Experiment:

Reynold performed a very carefully prepared pipe flow experiment. Reynold found that transition from laminar to turbulent flow in a pipe depends not only on the velocity, but only on the pipe diameter and the viscosity of the fluid.

Reynolds number is used to check whether the flow is laminar or turbulent. It is denoted by " $\mathbf{R}_{\mathbf{n}}$ ". This number got by comparing inertial force with viscous force.

$$
R_{n}=\frac{\rho V D}{\mu}=\frac{V D}{v}=\frac{\text { Inertial Forces }}{\text { Viscous Forces }}
$$

Where
V: mean velocity in the pipe السرعة المتوسطة [L/T]
D: pipe diameter
ρ : density of flowing fluid

قطر الماسورة
كثافة السائل
$\left[\mathrm{M} / \mathrm{L}^{3}\right]$

ب
v : kinematic viscosity
[M/LT]
[$\left.\mathrm{L}^{2} / \mathrm{T}\right]$
 وسماه "رقم رينولد". وبالتاللى يصبح"رقم رينولد" أكثر تعبير ا عن حالة السريان.

The Kind of flow depends on value of " $\mathbf{R}_{\mathbf{n}}$ "
If $\mathbf{R}_{\mathbf{n}}<2000$ the flow is Laminar
If $\mathbf{R}_{\mathbf{n}}>4000$ the flow is turbulent
If $2000<\mathbf{R}_{\mathbf{n}}<4000$ it is called transition flow.

Laminar Vs. Turbulent flows

Laminar flows characterized by:

- low velocities
- small length scales
- high kinematic viscosities
- $\mathrm{R}_{\mathrm{n}}<$ Critical R_{n}
- Viscous forces are dominant

Turbulent flows characterized by

- high velocities
- large length scales
- low kinematic viscosities
- $\mathrm{R}_{\mathrm{n}}>$ Critical R_{n}
- Inertial forces are dominant

Velocity profiles of laminar and turbulent flows in circular pipes
يتضح من منحنى توزيع السر عات أنه فى حالة السريان الطبقى تكون أقصى سرعة عند المنتصف و أقل سرعة عند جدار الماسورة وهى مساوية للصفر . أما فى حالة اللسريان المضطرب فـي فيمكن تقسيم السريان الى منطقتين: منطقة الطبقة اللزجة ومنطقة الاضطرابة. وكلما زاد"رقم رينولد" كلما اقترب توزيع السر عات من الشكل المستطيل (توزيع منتظم).

Example 1-1

40 mm diameter circular pipe carries water $\left(v=1 \times 10^{-6} \mathrm{~m}^{2} / \mathrm{s}\right)$. Calculate the largest flow rate (Q) which laminar flow can be expected.

Solution

$$
D=0.04 m
$$

$$
R_{n}=\frac{V D}{v}=2000 \Rightarrow \frac{V(0.04)}{1 \times 10^{-6}}=2000 \Rightarrow V=0.05 \mathrm{~m} / \mathrm{sec}
$$

$$
Q=V . A=0.05 \times \frac{\pi}{4}(0.04)^{2}=6.28 \times 10^{-5} \mathrm{~m}^{3} / \mathrm{sec}
$$

- Streamlines and Streamtubes:

Streamline "خط السريان "التنفقق:

A curve that is drawn in such a way that it is tangential to the velocity vector at any point along the curve. A curve that is representing the direction of flow at a given time. No flow across a stream line.

هو ذلك الخط الذى يعبر عن اتجاه حركة الجزيئات الموجودة عليه فى لحظة زمنية معينة.

Streamtube" أنبوب اللسريـن "التدفق

A set of streamlines arranged to form an imaginary tube. Ex: The internal surface of a pipeline.

مجمو عة من خطوط السريان تمثل فيما بينها أنبوب.

[- Compressible And Incompressible Flows:

Incompressible Flow is a type of flow in which the density (ρ) is constant in the flow field.

Compressible Flow is the type of flow in which the density of the fluid changes in the flow field.

\square Ideal and Real Fluids:

a- Ideal Fluids

$>$ It is a fluid that has no viscosity, and incompressible
$>$ Shear resistance is considered zero
$>$ Ideal fluid does not exist in nature e.g. Water and air are assumed ideal

b- Real Fluids

$>$ It is a fluid that has viscosity, and compressible
> It offers resistance to its flow e.g. All fluids in nature
عند دراستتا لسائل نحتبر ان السائل غير قابل للانضغاط ومثاللى وبذلك نهمل قوى الاحتكاك الداخلى للحصول على معادلات بسيطة، ثم يتم تصحيحها بعد ذلك لأخذ فوى الاحتاك فى الاعتبار.

1.4 Volume flow rate - Discharge :

The discharge is the volume of fluid passing a given cross-section per unit time.
discharge, $\mathrm{Q}=\frac{\text { volume of fluid }}{\text { time }}$

1.5 Mean Velocity:

It is the average velocity passing a given cection.
The velocity in the pipe is not constant across the cross section. Crossing the centreline of the pipe, the velocity is zero at the walls increasing to a maximum at the centre then decreasing symmetrically to the other wall. This variation across the section is known as the velocity profile or distribution.

$$
\mathrm{v}_{m}=\frac{Q}{A}
$$

A typical velocity profile across a pipe

1.6 Continuity equation for Incompressible Steady flow معادلة الاستمر/ا

 :للسريان (المستققCross section and elevation of the pipe are varied along the axial direction of the flow.

Conservation law of mass

$$
\rho \cdot d \operatorname{Vol}_{1-1^{\prime}}=\rho \cdot d \operatorname{Vol}_{2-2^{\prime}}=\text { mass flux }(\text { fluid mass })
$$

$$
\begin{aligned}
& \rho \cdot \frac{d V o l_{1-1^{\prime}}}{d t}=\rho \cdot \frac{d V o l_{2-2^{\prime}}}{d t} \\
& \rho \cdot A_{1} \frac{d S_{1}}{d t}=\rho \cdot A_{2} \frac{d S_{2}}{d t} \Rightarrow \rho \cdot A_{1} \cdot V_{1}=\rho \cdot A_{2} \cdot V_{2}=\rho \cdot Q
\end{aligned}
$$

Continuity equation for Incompressible Steady flow

$$
A_{1} \cdot V_{1}=A_{2} \cdot V_{2}=Q
$$

اذا استمر الساتلّ فى تدفقه خلال مجرى مائى ما مثل فناة أو ماسورة منتظمة أو متنيرة الـقطع فانٍ كية السائل المارة خلال وحدة الزمن نكون منساوية عند جميع القطاعات خلال المجرى، و هذا هو ما يعرف بمعادلة الاستمرار للسريان المستقر.

Apply Newton's Second Law:

$$
\begin{aligned}
& \sum \vec{F}=M \vec{a}=M \frac{d \vec{V}}{d t}=\frac{M \vec{V}_{2}-M \vec{V}_{1}}{\Delta t} \\
& \sum F_{x}=P_{1} A_{1}-P_{2} A_{2}-F_{x}+W_{x}
\end{aligned}
$$

F_{x} is the axial direction force exerted on the control volume by the wall of the pipe.

$$
\text { but } M / \Delta t=\rho \cdot Q=\text { mass flow rate }
$$

$$
\begin{aligned}
& \sum F_{x}=\rho \cdot Q\left(V_{x_{2}}-V_{x_{1}}\right) \\
& \sum F_{y}=\rho \cdot Q\left(V_{y_{2}}-V_{y_{1}}\right) \\
& \sum F_{z}=\rho \cdot Q\left(V_{z_{2}}-V_{z_{1}}\right)
\end{aligned}
$$

$$
\sum \vec{F}=\rho \cdot Q\left(\vec{V}_{2}-\vec{V}_{1}\right)
$$

Conservation of moment equation

5.1 Energy Head in Pipe Flow

Water flow in pipes may contain energy in three basic forms:
1- Kinetic energy طاقة الحركة,
2- Potential energy طاقة الوضع,
3- Pressure energy طاقة الضغط .

- Consider the control volume:

- In time interval dt:
$>$ Water particles at sec.1-1 move to sec. 1`-1` with velocity V_{1}.
$>$ Water particles at sec.2-2 move to sec. 2`-2` with velocity V_{2}.
To satisfy continuity equation:

$$
A_{1} \cdot V_{1} \cdot d t=A_{2} \cdot V_{2} \cdot d t
$$

The work done by the pressure force:

$$
\begin{aligned}
P_{1} \cdot A_{1} \cdot d s_{1}=P_{1} \cdot A_{1} \cdot V_{1} \cdot d t & \ldots \ldots . \text { on section 1-1 } \\
-P_{2} \cdot A_{2} \cdot d s_{2}=-P_{2} \cdot A_{2} \cdot V_{2} \cdot d t & \ldots \ldots . \text { on section } 2-2
\end{aligned}
$$

-ve sign because P_{2} is in the opposite direction to distance traveled ds ${ }_{2}$

The work done by the gravity force:

$$
\rho g \cdot A_{1} \cdot V_{1} d t \cdot\left(z_{1}-z_{2}\right)
$$

The kinetic energy:

$$
\frac{1}{2} M \cdot V_{2}^{2}-\frac{1}{2} M \cdot V_{1}^{2}=\frac{1}{2} \rho \cdot A_{1} \cdot V_{1} \cdot d t\left(V_{2}^{2}-V_{1}^{2}\right)
$$

The total work done by all forces is equal to the change in kinetic energy:
$P_{1} \cdot Q . d t-P_{2} \cdot Q . d t+\rho g . Q . d t \cdot\left(z_{1}-z_{2}\right)=\frac{1}{2} \rho \cdot Q \cdot d t\left(V_{2}^{2}-V_{1}^{2}\right)$
Dividing both sides by ρg Qdt

Bernoulli Equation

Energy per unit weight of water OR: Energy Head

Energy head and Head loss in pipe flow

In reality, certain amount of energy loss $\left(\mathrm{h}_{\mathrm{L}}\right)$ occurs when the water mass flow from one section to another.

The energy relationship between two sections can be written as:

$$
\frac{V_{1}^{2}}{2 g}+\frac{P_{1}}{\gamma}+z_{1}=\frac{V_{2}^{2}}{2 g}+\frac{P_{2}}{\gamma}+z_{2}+h_{L}
$$

1.7 Flow Through A Single Pipe:

1.7.1 Calculation of Head (Energy) Losses الطاقة المفقودة :

When a fluid is flowing through a pipe, the fluid experiences some resistance due to which some of energy (head) of fluid is lost.

loss of head due to pipe friction and to viscous dissipation in flowing water

Minor losses
Loss due to the change of the velocity of the flowing fluid in the magnitude or in direction as it moves through fitting like Valves, Tees, Bends and Reducers.

يمكن تقسيم الفو اقد فى الضاغط الى نو عين: الأولى وهى فو اقد رئيسية ناتجة عن الاحتكاك على طول المجرى، والثانية فو اقد ثانوية ناتجة عن وجود عائق فى المجرى أو نتيجة تغير شكل المجرى.

1.7.2 Losses of Head due to Friction لفاقد فى الضاغط بالاحتكاك

$>$ Energy loss through friction in the length of pipeline is commonly termed the major loss h_{f}
$>$ This is the loss of head due to pipe friction and to the viscous dissipation in flowing water.
$>$ The resistance to flow in a pipe is a function of:
$>$ The pipe length, L
$>$ The pipe diameter, D
$>$ The mean velocity, V
$>$ The properties of the fluid ()
$>$ The roughness of the pipe, (the flow is turbulent).
$>$ Several formulas have been developed in the past. Some of these formulas have faithfully been used in various hydraulic engineering practices.
$>$ Darcy-Weisbach formula
$>$ The Hazen -Williams Formula
> The Manning Formula
$>$ The Chezy Formula

- Darcy-Weisbach Equation
$h_{L}=F \frac{L}{D} \times \frac{V^{2}}{2 g}=\frac{8 F L Q^{2}}{g D^{5} \pi^{2}}$

> Where:
> F is the friction factor
> L is pipe length
> D is pipe diameter
> Q is the flow rate
> b_{L} is the loss due to friction

Friction Factor: (F) معامل الاحتكاك

$>$ For Laminar flow: $\left(\mathrm{R}_{\mathrm{n}}<2000\right)$ [depends only on Reynolds' number and not on the surface roughness]

$$
F=\frac{64}{\mathrm{R}_{\mathrm{n}}}
$$

$>$ For turbulent flow in smooth pipes $(\mathrm{e} / \mathrm{D}=0)$ with $4000<\mathrm{R}_{\mathrm{n}}<10^{5}$ is

$$
F=\frac{0.316}{R_{n}^{1 / 4}}
$$

> The thickness of the laminar sublayer δ decrease with an increase in R_{n}.
f independent of relative roughness e/D

$$
F=\frac{64}{R_{n}} \quad \frac{1}{\sqrt{F}}=2 \log _{10}\left(\frac{R_{n} \sqrt{F}}{2.51}\right)
$$

f varies with N_{R} and e/D

Colebrook formula
turbulent flow

$$
R_{n}>4000
$$

pipe wall

Moody diagram

$>$ A convenient chart was prepared by Lewis F. Moody and commonly called the Moody diagram of friction factors for pipe flow, There are 4 zones of pipe flow in the chart:
$>$ A laminar flow zone where F is simple linear function of R_{n}
$>$ A critical zone (shaded) where values are uncertain because the flow might be neither laminar nor truly turbulent
$>$ A transition zone where F is a function of both R_{n} and relative roughness
$>$ A zone of fully developed turbulence where the value of F depends solely on the relative roughness and independent of the Reynolds Number

Moody Diagram (Plot of Colebrook's Correlation)

Typical values of the absolute roughness (e) are given in the next table

Roughness Height, e, for Certain Common Pipe Materials

Pipe Material	$e(\mathrm{~mm})$	$e(f t)$
Glass, drawn brass, copper (new)	0.0015	0.000005
Seamless commercial steel (new)	0.004	0.000013
Commercial steel (enamel coated)	0.0048	0.000016
Commercial steel (new)	0.045	0.00015
Wrought iron (new)	0.045	0.00015
Asphalted cast iron (new)	0.12	0.0004
Galvanized iron	0.15	0.0005
Cast iron (new)	0.26	0.00085
Wood Stave (new)	$0.18 \sim 0.9$	$0.0006 \sim 0.003$
Concrete (steel forms, smooth)	0.18	0.0006
Concrete (good joints, average)	0.36	0.0012
Concrete (rough, visible, form marks)	0.60	0.002
Riveted steel (new)	$0.9 \sim 9.0$	$0.003-0.03$
Corrugated metal	45	0.15

Example 1-2

The water flow in Asphalted cast Iron pipe $(\mathrm{e}=0.12 \mathrm{~mm})$ has a diameter 20 cm at $20^{\circ} \mathrm{C}$. Is $0.05 \mathrm{~m}^{3} / \mathrm{s}$. determine the losses due to friction per 1 km

Solution

$$
\begin{aligned}
\mathrm{V} & =\frac{0.05 \mathrm{~m}^{3} / \mathrm{s}}{(\pi / 4)\left(0.2^{2} \mathrm{~m}^{2}\right)}=1.59 \mathrm{~m} / \mathrm{s} \\
T & =20^{\circ} \mathrm{C} \Rightarrow \mathrm{v}=1.01 \times 10^{-6} \mathrm{~m}^{2} / \mathrm{s} \\
e & =0.12 \mathrm{~mm} \\
\frac{e}{D} & =\frac{0.12 \mathrm{~mm}}{200 \mathrm{~mm}}=0.0006 \mathrm{C}^{2} \\
R_{n} & =\frac{V D}{v}=\frac{1.59 \times 0.2}{1.01 \times 10^{-6}}=314852=3.15 \times 10^{5} \quad \mathrm{~F}=0.018 \\
h_{f} & =F \frac{L}{D} \frac{V^{2}}{2 g}=0.018\left(\frac{1,000 \mathrm{~m}}{0.20 \mathrm{~m}}\right)\left(\frac{1.59^{2}}{2\left(9.81 \mathrm{~m} / \mathrm{s}^{2}\right)}\right) \\
& =11.55 \mathrm{~m} \\
D & \geq 5 \mathrm{~cm}---V \leq 3.0 \mathrm{~m} / \mathrm{sec} \\
V & =1.318 C_{H W} R_{h}^{0.63} S^{0.54} \quad \text { British Units } \\
V & =0.85 C_{H W} R_{h}^{0.63} S^{0.54} \quad \text { SI Units }
\end{aligned}
$$

$$
R_{h} \rightarrow \text { hydraulic Radius }=\frac{\text { wetted } \mathrm{A}}{\text { wetted } \mathrm{P}}=\frac{\frac{\pi D^{2}}{4}}{\pi D}=\frac{D}{4}
$$

$$
S=\frac{h_{f}}{L}
$$

$$
C_{H W} \rightarrow \text { Hazen Williams Coefficient }
$$

$$
h_{f}=\frac{10.7 L}{C_{H W}^{1.852} D^{4.87}} Q^{1.852} \quad \quad \text { SI Units }
$$

Hazen-Williams Coefficient, $C_{\text {Hw, }}$ for Different Types of Pipe

Pipe Materials	$C_{H W}$
Asbestos Cement	140
Brass	$130-140$
Brick sewer	100
Cast-iron	130
\quad New, unlined	$107-113$
10 yr. old	$89-100$
20 yr. old	$75-90$
30 yr. old	$64-83$
40 yr. old	140
Concrete or concrete lined	120
\quad Steel forms	135
Wooden forms	$130-140$
\quad Centrifugally spun	120
Copper	140
Galvanized iron	$130-140$
Glass	$140-150$
Lead	
Plastic	$145-150$
Steel	$140-150$
\quad Coal-tar enamel lined	110
New unlined	130
Riveted	$110-140$
Tin	120
Vitrified clay (good condition)	
Wood stave (average condition)	

[Manning Formula

This formula has extensively been used for open channel design, it is also quite commonly used for pipe flows

$$
\begin{aligned}
V & =\frac{1}{n} R_{h}^{2 / 3} S^{1 / 2} \\
& \begin{array}{l}
R_{h} \rightarrow \text { hydraulic Radius }=\frac{\text { wetted A }}{\text { wetted } \mathrm{P}}=\frac{D}{4} \\
\\
h_{f}
\end{array} \\
& \begin{array}{l}
S=\frac{h_{f}}{L} \\
n \rightarrow \text { Manning Coefficient }
\end{array} \\
D^{5.33} & \text { SI Units }
\end{aligned}
$$

Manning's Roughness Coefficient, n, for Pipe Flows

	Manning's n	
Type of Pipe	Min.	Max.
Glass, brass, or copper	0.009	0.013
Smooth cement surface	0.010	0.013
Wood-stave	0.010	0.013
Vitrified sewer pipe	0.010	0.017
Cast-iron	0.011	0.015
Concrete, precast	0.011	0.015
Cement mortar surfaces	0.011	0.015
Common-clay drainage tile	0.011	0.017
Wrought iron	0.012	0.017
Brick with cement mortar	0.012	0.017
Riveted-steel	0.017	0.020
Cement rubble surfaces	0.017	0.030
Corrugated metal storm drain	0.020	0.024

\square The Chezy Formula

$$
\begin{gathered}
V=C R_{h}^{1 / 2} S^{1 / 2} \\
h_{f}=4 \frac{L}{D}\left(\frac{V}{C}\right)^{2}
\end{gathered}
$$

Where C = Chezy coefficient
$>$ It can be shown that this formula, for circular pipes, is equivalent to Darcy's formula with the value for

$$
C=\sqrt{\frac{8 g}{F}}
$$

F is Darcy Weisbeich coefficient
> The following formula has been proposed for the value of C :

$$
C=\frac{23+\frac{0.00155}{S}+\frac{1}{n}}{1+\left(23+\frac{0.00155}{S}\right) \frac{n}{\sqrt{R_{h}}}}
$$

n is the Manning coefficient

Example 1-3

New Cast Iron $\left(\mathrm{C}_{\mathrm{HW}}=130, \mathrm{n}=0.011\right)$ has length $=6 \mathrm{~km}$ and diameter $=$ $30 \mathrm{~cm} . \mathrm{Q}=0.32 \mathrm{~m}^{3} / \mathrm{s}, \mathrm{T}=30^{\circ}$. Calculate the head loss due to friction.

Solution

$>$ Hazen-William Method

$$
\begin{aligned}
h_{f} & =\frac{10.7 L}{C_{H W}^{1.852} D^{4.87}} Q^{1.852} \\
h_{f} & =\frac{10.7 \times 6000}{130^{1.852} 0.3^{4.87}} 0.32^{1.852}=333 m
\end{aligned}
$$

> Manning Method

$$
\begin{aligned}
& h_{f}=\frac{10.3 L(n Q)^{2}}{D^{5.33}} \\
& h_{f}=\frac{10.3 \times 6000(0.011 \times 0.32)^{2}}{0.3^{5.33}}=470 \mathrm{~m}
\end{aligned}
$$

1.7.3 Minor losses الفو اق الثثانوية:

$>$ It is due to the change of the velocity of the flowing fluid in the magnitude or in direction [turbulence within bulk flow as it moves through and fitting]
$>$ The minor losses occurs du to :
$>$ Valves
$>$ Tees, Bends

Flow pattern through a valve
$>$ Reducers
$>$ And other appurtenances
It has the common form

$$
h_{m}=k_{L} \frac{V^{2}}{2 g}=k_{L} \frac{Q^{2}}{2 g A^{2}}
$$

$>$ "minor" compared to friction losses in long pipelines but, can be the dominant cause of head loss in shorter pipelines.

- Losses due to Sudden contraction الفاقد فی الضاغط نتيجة ضيق مفاجئ:

A sudden contraction in a pipe usually causes a marked drop in pressure in the pipe due to both the increase in velocity and the loss of energy to turbulence.

نتيجة وجود ضيق مفاجئ تحدث مناطق انفصـال تُحدث فاقد فى الطاقة.

$$
h_{L}=0.5 \frac{V_{2}^{2}}{2 g}
$$

[] Head Loss Due to Gradual Contraction ضيق تدريجى:

Head losses due to pipe contraction may be greatly reduced by introducing a gradual pipe transition known as a confusor

: Losses due to Sudden Enlargement الفاقد فى الضاغط نتيجة الاتساع المفاجئ:

Note that the drop in the energy line is much larger than in the case of a contraction

[] Head Loss Due to Gradual Enlargement اتساع تـريجى:

Head losses due to pipe enlargement may be greatly reduced by introducing a gradual pipe transition known as a diffusor

$$
h_{E}^{\prime}=k_{E}{ }^{\prime} \frac{V_{1}^{2}-V_{2}^{2}}{2 g}
$$

α	10°	20°	30°	40°	50°	60°	75°
K_{E}^{\prime}	.078	.31	.49	.60	.67	.72	.72

[- Loss due to pipe entrance الفاقد فى الضاغط عند مدخل ماسورة:
General formula for head loss at the entrance of a pipe is also expressed in term of velocity head of the pipe

$$
h_{e n t}=K_{e n t} \frac{V^{2}}{2 g}
$$

[- Head Loss at the Exit of a Pipe الفاقد في الضاغط عند مخرج ماسورة:
(a)

$h_{L}=\frac{V^{2}}{2 g}$

$$
\mathrm{K}_{\mathrm{L}}=1.0
$$

(b)

(c)

(d)

[] Head Loss Due to Bends in Pipes الفقاقد فى الضاغط نتيجة الانحناء:

Outer wall (high pressure)

(b)

Figure Head loss at a bend: (a) flow separation in a bend; (b) secondary flow at a bend.

R / D	1	2	4	6	10	16	20
K_{b}	0.35	0.19	0.17	0.22	0.32	0.38	0.42

Example 1-4

A tank where the water level is 25.0 m above an arbitrary datum feeds a pipeline $A B$ ending at B with a nozzle 4.0 cm diameter. Pipe $A B$ is 15.0 cm diameter with point A being 20.0 m above datum and point B at datum. Find:
i) The discharge through the pipeline, the pressures and water velocities at A \& B.
ii) If friction losses in the nozzle are 0.5 m , and between $\mathrm{A} \& \mathrm{~B}$ are 5.0 m , resolve (i) and plot the hydraulic gradient and total energy lines.

Solution

i) Ideal flow

Apply B.E bet. 1 \& 2
$\mathrm{Z}_{1}+\mathrm{v}_{1}{ }^{2} / 2 \mathrm{~g}+\mathrm{P}_{1} / \gamma=\mathrm{Z}_{2}+\mathrm{v}_{2}{ }^{2} / 2 \mathrm{~g}+\mathrm{P}_{2} / \gamma$
$25+0+0=0+0+\mathrm{v}_{2}{ }^{2} / 2 \mathrm{~g} \rightarrow \mathrm{v}_{2}=22.147 \mathrm{~m} / \mathrm{sec}$
$\mathrm{Q}=\mathrm{A}_{2} \mathrm{v}_{2}=\pi / 4(0.04)^{2} * 22.147=0.0278 \mathrm{~m}^{3} / \mathrm{sec}$
$\mathrm{Q}=\mathrm{A}_{\mathrm{A}} \mathrm{v}_{\mathrm{A}}=\mathrm{A}_{\mathrm{B}} \mathrm{v}_{\mathrm{B}}=\pi / 4(0.15)^{2} * \mathrm{v}_{\mathrm{A}}=0.0278 \mathrm{~m}^{3} / \mathrm{sec}$
$\mathrm{v}_{\mathrm{A}}=\mathrm{v}_{\mathrm{B}}=1.575 \mathrm{~m} / \mathrm{sec}$
Apply B.E bet. 1 \& B
$\mathrm{Z}_{1}+\mathrm{v}_{1}{ }^{2} / 2 \mathrm{~g}+\mathrm{P}_{1} / \gamma=\mathrm{Z}_{\mathrm{B}}+\mathrm{v}_{\mathrm{B}}{ }^{2} / 2 \mathrm{~g}+\mathrm{P}_{\mathrm{B}} / \gamma$
$25+0+0=0+v_{B}^{2} / 2 \mathrm{~g}+\mathrm{P}_{\mathrm{B}} / \gamma \rightarrow \mathrm{P}_{\mathrm{B}}=24.873 \mathrm{~m}$ of water
Apply B.E bet. 1 \& A
$\mathrm{Z}_{1}+\mathrm{v}_{1}^{2} / 2 \mathrm{~g}+\mathrm{P}_{1} / \gamma=\mathrm{Z}_{\mathrm{A}}+\mathrm{v}_{\mathrm{A}}^{2} / 2 \mathrm{~g}+\mathrm{P}_{\mathrm{A}} / \gamma$
$25+0+0=20+\mathrm{va}^{2} / 2 \mathrm{~g}+\mathrm{P}_{\mathrm{A}} / \gamma \rightarrow \mathrm{P}_{\mathrm{A}}=4.873 \mathrm{~m}$ of water

ii) Real flow

$\mathrm{hl}_{\text {nozzle }}=0.5 \mathrm{~m}$
$\mathrm{hl}_{\mathrm{AB}}=5 \mathrm{~m}$
Apply B.E bet. 1 \& 2
$\mathrm{Z}_{1}+\mathrm{v}_{1}{ }^{2} / 2 \mathrm{~g}+\mathrm{P}_{1} / \gamma=\mathrm{Z}_{2}+\mathrm{v}_{2}{ }^{2} / 2 \mathrm{~g}+\mathrm{P}_{2} / \gamma+\mathrm{hl}$
$25+0+0=0+0+\mathrm{v}_{2}{ }^{2} / 2 \mathrm{~g}+5.5 \rightarrow \mathrm{v}_{2}=19.56 \mathrm{~m} / \mathrm{sec}$
$\mathrm{Q}=\mathrm{A}_{2} \mathrm{v}_{2}=\pi / 4(0.04)^{2} * 19.56=0.02458 \mathrm{~m}^{3} / \mathrm{sec}$
$\mathrm{Q}=\mathrm{A}_{\mathrm{A}} \mathrm{v}_{\mathrm{A}}=\mathrm{A}_{\mathrm{B}} \mathrm{v}_{\mathrm{B}}=\pi / 4(0.15)^{2} * \mathrm{v}_{\mathrm{A}}=0.02458 \mathrm{~m}^{3} / \mathrm{sec}$
$\mathrm{v}_{\mathrm{A}}=\mathrm{v}_{\mathrm{B}}=1.391 \mathrm{~m} / \mathrm{sec}$
Apply B.E bet. 1 \& B
$\mathrm{Z}_{1}+\mathrm{v}_{1}{ }^{2} / 2 \mathrm{~g}+\mathrm{P}_{1} / \gamma=\mathrm{Z}_{\mathrm{B}}+\mathrm{v}_{\mathrm{B}}{ }^{2} / 2 \mathrm{~g}+\mathrm{P}_{\mathrm{B}} / \gamma+\mathrm{hl}$
$25+0+0=0+\mathrm{v}_{\mathrm{B}}^{2} / 2 \mathrm{~g}+\mathrm{P}_{\mathrm{B}} / \gamma+5 \rightarrow \mathrm{P}_{\mathrm{B}}=19.9 \mathrm{~m}$ of water
Apply B.E bet. 1 \& A

$$
\begin{aligned}
& \mathrm{Z}_{1}+\mathrm{v}_{1}^{2} / 2 \mathrm{~g}+\mathrm{P}_{1} / \gamma=\mathrm{Z}_{\mathrm{A}}+\mathrm{v}_{\mathrm{A}}^{2} / 2 \mathrm{~g}+\mathrm{P}_{\mathrm{A}} / \gamma \\
& 25+0+0=20+\mathrm{v}_{\mathrm{A}}^{2} / 2 \mathrm{~g}+\mathrm{P}_{\mathrm{A}} / \gamma \rightarrow \mathrm{P}_{\mathrm{A}}=4.901 \mathrm{~m} \text { of water }
\end{aligned}
$$

1.8 Compound Pipe flow :

When two or more pipes with different diameters are connected together head to tail (in series) or connected to two common nodes (in parallel). The system is called "compound pipe flow"

1.8.1 Flow Through Pipes in Series توصيل المواسبير على التوالمى:

Pipes of different lengths and different diameters connected end to end (in series) to form a pipeline

Discharge: The discharge through each pipe is the same

$$
Q=A_{1} V_{1}=A_{2} V_{2}=A_{3} V_{3}
$$

Head loss: The difference in liquid surface levels is equal to the sum of the total head loss in the pipes:

$$
\begin{gathered}
\frac{P_{A}}{\gamma}+\frac{V_{A}^{2}}{2 g}+z_{A}=\frac{P_{B}}{\gamma}+\frac{V_{B}^{2}}{2 g}+z_{B}+h_{L} \\
z_{A}-z_{B}=h_{L}=H
\end{gathered}
$$

Where

$$
\begin{gathered}
h_{L}=\sum_{i=1}^{3} h_{f i}+\sum_{j=1}^{4} h_{m j} \\
h_{L}=\sum_{i=1}^{3} F_{i} \frac{L_{i}}{D_{i}} \frac{V_{i}^{2}}{2 g}+K_{e n t} \frac{V_{1}^{2}}{2 g}+K_{c} \frac{V_{2}^{2}}{2 g}+K_{e n l} \frac{V_{2}^{2}}{2 g}+K_{\text {exit }} \frac{V_{3}^{2}}{2 g}
\end{gathered}
$$

1.8.2 Flow Through Parallel Pipe تئوصيل المواسير عثى التّوازیى

If a main pipe divides into two or more branches and again join together downstream to form a single pipe, then the branched pipes are said to be connected in parallel (compound pipes). Points A and B are called nodes.

Discharge:

$$
Q=Q_{1}+Q_{2}+Q_{3}=\sum_{i=1}^{3} Q_{i}
$$

$\underline{\text { Head loss: the head loss for each branch is the same }}$

$$
\begin{gathered}
h_{L}=h_{f 1}=h_{f 2}=h_{f 3} \\
F_{1} \frac{L_{1}}{D_{1}} \frac{V_{1}^{2}}{2 g}=F_{2} \frac{L_{2}}{D_{2}} \frac{V_{2}^{2}}{2 g}=F_{3} \frac{L_{3}}{D_{3}} \frac{V_{3}^{2}}{2 g}
\end{gathered}
$$

Example 1-5

Determine the flow in each pipe and the flow in the main pipe if Head loss between A \& B is 2 m \& $\mathrm{F}=0.01$

Solution

$$
\begin{array}{l|l}
h_{f 1}=h_{f 2}=2 & F \frac{L_{2}}{D_{2}} \cdot \frac{V_{2}^{2}}{2 g}=2 \\
F \frac{L_{1}}{D_{1}} \cdot \frac{V_{1}^{2}}{2 g}=2 & 0.01 \times \frac{30}{0.05} \times \frac{V_{2}^{2}}{2 \times 9.81} \\
0.01 \times \frac{25}{0.04} \times \frac{V_{1}^{2}}{2 \times 9.81}=2 & V_{2}=2.557 \mathrm{~m} / \mathrm{s} \\
V_{1}=2.506 \mathrm{~m} / \mathrm{s} & Q_{2}=\frac{\pi}{4}(0.05)^{2} \times 2.557=5.02 \times 10^{-3} \mathrm{~m}^{3} / \mathrm{s} \\
Q_{1}=V_{1} A_{1}=\frac{\pi}{4}(0.04)^{2} \times 2.506=3.15 \times 10^{-3} \mathrm{~m}^{3} / \mathrm{s} & Q=Q_{1}+Q_{2}=8.17 \times 10^{-3} \mathrm{~m}^{3} / \mathrm{s}
\end{array}
$$

Example 1-6

In the figure shown two new cast iron pipes in series, $\mathrm{D}_{1}=0.6 \mathrm{~m}, \mathrm{D}_{2}=0.4$ m length of the two pipes is 300 m , level at $\mathrm{A}=80 \mathrm{~m}, \mathrm{Q}=0.5 \mathrm{~m}^{3} / \mathrm{s}\left(\mathrm{F}_{1}=\right.$ $0.017, \mathrm{~F}_{2}=0.018$). There are a sudden contraction between Pipe 1 and 2, and Sharp entrance at pipe 1, and Sharp outlet at pipe 2.

1- Find the water level at B, and draw T.E.L \& H.G.L
2- If the two pipes are connected in parallel to each other, and the difference in elevation is 20 m . Find the total flow.

Solution

$$
\begin{gathered}
K_{\text {ent }}=0.5, \quad K_{c}=0.27, \quad K_{\text {exit }}=1 \\
h_{L}=F_{1} \frac{L_{1}}{D_{1}} \frac{V_{1}^{2}}{2 g}+F_{2} \frac{L_{2}}{D_{2}} \frac{V_{2}^{2}}{2 g}+k_{\text {ent }} \frac{V_{1}^{2}}{2 g}+k_{c} \frac{V_{2}^{2}}{2 g}+k_{\text {exit }} \frac{V_{2}^{2}}{2 g}
\end{gathered}
$$

$$
\begin{aligned}
h_{f}=0.017\left(\frac{300}{0.6}\right) \cdot \frac{1.77^{2}}{2 g}+ & 0.018\left(\frac{300}{0.4}\right) \cdot \frac{3.98^{2}}{2 g} \\
& +0.5\left(\frac{1.77^{2}}{2 g}\right)+0.27\left(\frac{3.98^{2}}{2 g}\right)+\left(\frac{3.98^{2}}{2 g}\right)=13.36 \mathrm{~m}
\end{aligned}
$$

$$
\mathrm{Z}_{\mathrm{B}}=80-13.36=66.64 \mathrm{~m}
$$

Pipes are connected in parallel

$$
\begin{aligned}
& h_{L}=F \frac{L_{1}}{D_{1}} \frac{V_{1}^{2}}{2 g}+k_{\text {ent }} \frac{V_{1}^{2}}{2 g}+k_{\text {exit }} \frac{V_{1}^{2}}{2 g} \\
& 20=0.017 \frac{300}{0.60} \frac{V_{1}^{2}}{2 g}+0.50 \frac{V_{1}^{2}}{2 g}+\frac{V_{1}^{2}}{2 g} \\
& 20=0.018 \frac{300}{0.40} \frac{V_{2}^{2}}{2 g}+0.50 \frac{V_{2}^{2}}{2 g}+\frac{V_{2}^{2}}{2 g} \\
& \begin{array}{l}
V_{1}=6.26 \mathrm{~m} / \mathrm{s} \\
Q_{1}=1.77 \mathrm{~m} 3 / \mathrm{s} \\
V_{2}=5.11 \mathrm{~m} / \mathrm{s} \\
Q_{1}=0.64 \mathrm{~m} 3 / \mathrm{s} \\
\hline
\end{array} \\
& Q=1.77+0.64=2.41 \mathrm{~m} 3 / \mathrm{s}
\end{aligned}
$$

Example 1-7

1- Determine the flow rate in each pipe ($\mathrm{F}=0.015$)
2- Also, if the two pipes are replaced with one pipe of the same length determine the diameter which give the same flow.

$$
\mathrm{H}=h_{L 1}=\frac{f \times L_{1} \times V_{1}^{2}}{D_{1} \times 2 g}=\frac{0.032 \times 100 \times V_{1}^{2}}{0.05 \times 2 \times 9.81}
$$

$10=3.2619 \mathrm{~V}_{1}^{2}$
$V_{1}=\sqrt{\frac{10}{3.2619}}=1.75 \mathrm{~m} / \mathrm{s}$
$\therefore Q_{1}=V_{1} \times A_{1}=1.75 \times \frac{\pi}{4}\left(d_{1}\right)^{2}$
$=1.75 \times \frac{\pi}{4}(0.05)^{2}=0.00344 \mathrm{~m}^{3} / \mathrm{s}$
$\mathrm{H}=h_{L 2}=\frac{f \times L_{2} \times V_{2}^{2}}{d_{2} \times 2 g}=10$
$\mathrm{V}_{2}=\sqrt{\frac{10 \times 0.10 \times 2 \times 9.81}{0.032 \times 100}}=2.48 \mathrm{~m} / \mathrm{s}$
$\therefore Q_{2}=V_{2} \times A_{2}=2.48 \times \frac{\pi}{4}\left(d_{2}\right)^{2}$
$=2.48 \times \frac{\pi}{4}(0.10)^{2}=0.0195 \mathrm{~m}^{3} / \mathrm{s}$

If the two pipes are replaced with one pipe of the same length

$$
\begin{aligned}
& Q=Q_{1}+Q_{2}=0.00344+0.0195=0.02294 \\
& V=\frac{Q}{\text { Area }}=\frac{0.02294}{\frac{\pi}{4} D^{2}}=\frac{0.0292}{D^{2}} \mathrm{~m} / \mathrm{s} \\
& \mathrm{H}=h_{L}=\frac{f \times L \times V^{2}}{d \times 2 g}=\frac{0.032 \times 100 \times\left(\frac{0.0292}{D^{2}}\right)^{2}}{D \times 2 \times 9.81} \\
& 10=\frac{0.032 \times 100 \times(0.0292)^{2}}{D^{5} \times 2 \times 9.81}=\frac{0.000139}{D^{5}} \\
& D^{5}=\frac{0.000139}{10}=0.0000139 \\
& \therefore D=(0.0000139)^{\frac{1}{5}}=0.1068 \mathrm{~m}=106.8 \mathrm{~mm} .
\end{aligned}
$$

1.9 Pipe line with negative Pressure (syphon phenomena) ضنظ سالب على \%

It is a long bent pipe which is used to transfer liquid from a reservoir at a higher elevation to another reservoir at a lower level when the two reservoirs are separated by a hill or high ground
Occasionally, a section of the pipeline may be raised to an elevation that is above the local HGL.

$\frac{V_{p}{ }^{2}}{2 g}+\frac{P_{p}}{\gamma}+Z_{p}=\frac{V_{S}{ }^{2}}{2 g}+\frac{P_{S}}{\gamma}+Z_{S}+h_{L}$
$Z_{p}-Z_{S}=\frac{V_{S}{ }^{2}}{2 g}+\frac{P_{S}}{\gamma}+h_{L}$
-ve value \longrightarrow Must be -ve value (below the atmospheric pressure)

Negative pressure exists in the pipelines wherever the pipe line is raised above the hydraulic gradient line (between $P \& Q$)

The negative pressure at the summit point can reach theoretically -10.33 m water head (gauge pressure) and zero (absolute pressure). But in the practice water contains dissolved gasses that will vaporize before -10.33 m water head which reduces the pipe flow cross section.

Example 1-8

Syphon pipe between two pipe has diameter of 20 cm and length 500 m as shown. The difference between reservoir levels is 20 m . The distance between reservoir A and summit point S is 100 m . Calculate the flow in the system and the pressure head at summit. $\mathrm{F}=0.02$

Solution

$$
\begin{aligned}
& \mathrm{D}=0.2 \mathrm{~m}, \quad \mathrm{Z}_{\mathrm{A}}-\mathrm{Z}_{\mathrm{B}}=20 \mathrm{~m}, \quad \mathrm{~L}=500 \mathrm{~m}, \quad \mathrm{~L}_{\mathrm{AS}}=100 \mathrm{~m}, \quad f=0.02 \\
& \mathrm{Z}_{\mathrm{A}}-\mathrm{Z}_{\mathrm{B}}=h_{f}=f \frac{L}{D} \frac{V^{2}}{2 g} \\
& 20=0.02 \times \frac{500}{0.2} \times \frac{V^{2}}{2 \times 9.81}
\end{aligned}
$$

$$
\mathrm{V}=2.8 \mathrm{~m} / \mathrm{s}
$$

$$
Q=V A=0.08796 \mathrm{~m}^{3} / \mathrm{s}
$$

$$
\frac{\Sigma_{A}}{2 g}+\frac{A}{\gamma}+Z_{A}=\frac{0}{2 g}+\frac{0}{\gamma}+Z_{S}+h_{L}
$$

$$
Z_{A}-Z_{S}=\frac{V_{S}^{2}}{2 g}+\frac{P_{S}}{\gamma}+h_{L}
$$

$$
0-3=\frac{2.8^{2}}{2 g}+0.02 \frac{100}{0.2} \times \frac{2.8^{2}}{2 g}+\frac{P_{S}}{\gamma}
$$

$$
\frac{P_{S}}{\gamma}=-7.396 \mathrm{~m} \text { of water }
$$

Best regards,

Dr. Amir Mobasher

Example 1-9

A syphon filled with oil of specific gravity 0.8 discharges $220 \mathrm{lit} / \mathrm{s}$ to the atmosphere at an elevation of 3.0 m below oil level. The siphon is 0.2 m in diameter and its invert is 5.0 m above oil level. Find the losses in the siphon in terms of the velocity head. Find the pressure at the invert if two thirds of the losses occur in the first leg.

Solution

$\mathrm{v}=\mathrm{Q} / \mathrm{A}=0.22 /(\pi / 4(0.2) 2)=7 \mathrm{~m} / \mathrm{sec}$

Apply B.E bet. 1 \& 2

$\mathrm{Z} 1+\mathrm{v} 12 / 2 \mathrm{~g}+\mathrm{P} 1 / \gamma=\mathrm{Z} 2+\mathrm{v} 22 / 2 \mathrm{~g}+\mathrm{P} 2 / \gamma+\mathrm{h} 1$
$5+0+0=0+0+(7) 2 / 2 \mathrm{~g}+\mathrm{hl}$
$\mathrm{hl}=0.50 \mathrm{~m}$
Apply B.E bet. 1 \& 3
$\mathrm{Z} 1+\mathrm{v} 12 / 2 \mathrm{~g}+\mathrm{P} 1 / \gamma=\mathrm{Z} 3+\mathrm{v} 32 / 2 \mathrm{~g}+\mathrm{P} 3 / \gamma+\mathrm{hl}$
$5+0+0=8+(7) 2 / 2 \mathrm{~g}+\mathrm{P} 3 / \gamma+2 / 3 * 0.5$
$\mathrm{P} 3 / \gamma=-7.833 \mathrm{~m}$
$P 3=-7.833 \mathrm{~m}$ of oil $=-61474.6 \mathrm{~N} / \mathrm{m}^{2}$

1.10 Three-reservoirs problem :بالة الخزانات الثلاثّة

$>$ This system must satisfy:
$>$ The quantity of water brought to junction " J " is equal to the quantity of water taken away from the junction:

$$
Q_{3}=Q_{1}+Q_{2} \quad \text { Flow Direction???? }
$$

> All pipes that meet at junction " J " must share the same pressure at the junction.

1.10.1 Types of three-reservoirs problem:

\square Type 1:

- Given the lengths , diameters, and materials of all pipes involved;

$$
D_{1}, D_{2}, D_{3}, L_{1}, L_{2}, L_{3}, \text { and e or } F
$$

- Given the water elevation in any two reservoirs, Z_{1} and Z_{2} (for example)
- Given the flow rate from any one of the reservoirs, Q_{1} or Q_{2} or Q_{3}
- Determine the elevation of the third reservoir Z_{3} (for example) and the rest of Q's.

This types of problems can be solved by simply using:

- Bernoulli's equation for each pipe
- Continuity equation at the junction.

Example 1-10

In the following figure determine the flow in pipe BJ \& pipe CJ. Also, determine the water elevation in tank C

Solution

$\mathrm{L3}=800 \mathrm{~m}, \mathrm{~d} 3=30 \mathrm{~cm}$
Applying Bernoulli Equation between A, J :
$V_{1}=\frac{Q_{1}}{A_{1}}=\frac{0.06}{\frac{\pi}{4}(0.3)^{2}}=0.849 \mathrm{~m} / \mathrm{s}$
$Z_{A}-Z_{P}=F_{1} \frac{L_{1}}{D_{1}} \cdot \frac{V_{1}^{2}}{2 g} \longrightarrow 40-Z_{P}=0.024 \times \frac{1200}{0.3} \times \frac{0.849^{2}}{2 \times 9.81}$
$Z_{P}=36.475 \mathrm{~m}$
Applying Bernoulli Equation between B, J :

$$
\begin{aligned}
& \mathrm{Z}_{\mathrm{B}}-\mathrm{Z}_{\mathrm{p}}=F_{2} \frac{\mathrm{~L}_{2}}{\mathrm{D}_{2}} \cdot \frac{\mathrm{~V}_{2}{ }^{2}}{2 \mathrm{~g}} \longrightarrow 38-36.475=0.024 \times \frac{600}{0.2} \times \frac{\mathrm{V}_{2}{ }^{2}}{2 \times 9.81} \\
& \mathrm{~V}_{2}=0.645 \mathrm{~m} / \mathrm{s} \longrightarrow \mathrm{Q}_{2}=0.0203 \mathrm{~m}^{3} / \mathrm{s}
\end{aligned}
$$

Applying Bernoulli Equation between C, J :
$\sum Q=Q_{1}+Q_{2}+Q_{3}=0$

$$
Q_{3}=-Q_{1}-Q_{2}=-0.06-0.0203=-0.0803 \mathrm{~m}^{3} / \mathrm{s}
$$

$$
V_{3}=\frac{Q_{3}}{A_{3}}=\frac{0.0803}{\frac{\pi}{4}(0.3)^{2}}=1.136 \mathrm{~m} / \mathrm{s}
$$

$$
Z_{P}-Z_{C}=f_{3} \frac{L_{3}}{D_{3}} \cdot \frac{V_{3}^{2}}{2 g} \longrightarrow 36.475-Z_{\mathrm{c}}=0.024 \times \frac{800}{0.3} \times \frac{1.136^{2}}{2 g}
$$

$$
Z_{c}=32.265 \mathrm{~m}
$$

\square Type 2:

- given the lengths, diameters, and materials of all pipes involved;

$$
D_{1}, D_{2}, D_{3}, L_{1}, L_{2}, L_{3}, \text { and e or } F
$$

- given the water elevation in each of the three reservoirs,

$$
Z_{1}, Z_{2}, Z_{3}
$$

determine the discharges to or from each reservoir,

$$
Q_{1}, Q_{2}, \text { and } Q_{3} .
$$

1- First assume a piezometric surface elevation, P, at the junction.
2- This assumed elevation gives the head losses $h f_{1}, h f_{2}$, and $h f_{3}$
3- From this set of head losses and the given pipe diameters, lengths, and material, the trail computation gives a set of values for discharges Q_{1}, Q_{2}, and Q_{3}.
4- If the assumed elevation P is correct, the computed Q ' s should satisfy:

5- Otherwise, a new elevation P is assumed for the second trail.
The computation of another set of Q 's is performed until the above condition is satisfied

This types of problems are most conveniently solved by trail and error

Example 1-11

In the following figure determine the flow in each pipe.

Pipe	CJ	BJ	AJ
Length m	2000	4000	1000
Diameter cm	40	50	30
\boldsymbol{F}	0.022	0.021	0.024

Solution

Trial 1
$Z_{P}=110 m$
Applying Bernoulli Equation between A, J :

$$
\begin{gathered}
Z_{A}-Z_{P}=F_{1} \frac{L_{1}}{D_{1}} \cdot \frac{V_{1}^{2}}{2 g} \longrightarrow 120-110=0.024 \times \frac{1000}{0.3} \times \frac{V_{1}^{2}}{2 g} \\
\mathrm{~V} 1=1.57 \mathrm{~m} / \mathrm{s} \quad, \quad \mathrm{Q} 1=0.111 \mathrm{~m} 3 / \mathrm{s}
\end{gathered}
$$

Applying Bernoulli Equation between B, J :

$$
\begin{gathered}
Z_{P}-Z_{B}=F_{2} \frac{L_{2}}{D_{2}} \cdot \frac{V_{2}^{2}}{2 g} \longrightarrow 110-100=0.021 \times \frac{4000}{0.5} \times \frac{V_{2}^{2}}{2 g} \\
\mathrm{~V} 2=1.08 \mathrm{~m} / \mathrm{s} \quad, \quad \mathrm{Q} 2=-0.212 \mathrm{~m} 3 / \mathrm{s}
\end{gathered}
$$

Applying Bernoulli Equation between C, J:

$$
\begin{aligned}
& Z_{P}-Z_{C}=F_{3} \frac{L_{3}}{D_{3}} \cdot \frac{V_{3}^{2}}{2 g} \longrightarrow 110-80=0.022 \times \frac{2000}{0.4} \times \frac{V_{3}^{2}}{2 g} \\
& \mathrm{~V} 3=2.313 \mathrm{~m} / \mathrm{s} \quad, \quad \mathrm{Q} 2=-0.291 \mathrm{~m} 3 / \mathrm{s}
\end{aligned}
$$

$$
\sum Q=Q_{1}+Q_{2}+Q_{3}=0.111-0.212-0.291=-0.392 \neq 0
$$

Trial 2
$Z_{P}=100 m$

$\mathrm{Q} 1=0.157$
$\mathrm{Q} 2=0$
$\mathrm{Q} 3=-0.237$

$\sum Q=Q_{1}+Q_{2}+Q_{3}=0.157+0-0.237=-0.08 m^{3} / s \neq 0$
Trial 3
$Z_{P}=90 \mathrm{~m}$

$$
\begin{aligned}
& \mathrm{Q} 1=0.192 \\
& \mathrm{Q} 2=0.3 \\
& \mathrm{Q} 3=-0.168
\end{aligned}
$$

$\sum Q=Q_{1}+Q_{2}+Q_{3}=0.192+0.3-0.168=0.324 \mathrm{~m}^{3} / \mathrm{s} \neq 0$
Draw the relationship between $\sum Q$ and P

$\therefore \sum Q=0 \Rightarrow$ at $\mathrm{P}=99 \mathrm{~m}$

$\mathrm{Q} 1=0.160$
$\mathrm{Q} 2=0.067$
$\mathrm{Q} 3=-0.231$

$\sum Q=Q_{1}+Q_{2}+Q_{3}=0.16+0.067-0.0231=0.004 \mathrm{~m}^{3} / \mathrm{s} \approx 0$

CHAPTER 2

PIPE NETWORKS

2.1 Introduction

To deliver water to individual consumers with appropriate quality, quantity, and pressure in a community setting requires an extensive system of:

Pipes.
$>$ Storage reservoirs.
$>$ Pumps.
$>$ Other related accessories.

Distribution system: is used to describe collectively the facilities used to supply water from its source to the point of usage.

2.2 Methods of Supplying Water

2.2.1 Gravity Supply

The source of supply is at a sufficient elevation above the distribution area (consumers).

\square Advantages of Gravity supply

$>$ No energy costs.
$>$ Simple operation (fewer mechanical parts, independence of power supply,)
> Low maintenance costs.
$>$ No sudden pressure changes

2.2.2 Pumped Supply

Used whenever:

$>$ The source of water is lower than the area to which we need to distribute water to (consumers)
$>$ The source cannot maintain minimum pressure required.
\rightarrow Pumps are used to develop the necessary head (pressure) to distribute water to the consumer and storage reservoirs.

- Disadvantages of pumped supply

$>$ Complicated operation and maintenance.
$>$ Dependent on reliable power supply.
$>$ Precautions have to be taken in order to enable permanent supply:

- Stock with spare parts
- Alternative source of power supply

2.2.3 Combined Supply (pumped-storage supply)

Both pumps and storage reservoirs are used. This system is usually used in the following cases:
3-When two sources of water are used to supply water:

4-In the pumped system sometimes a storage (elevated) tank is

connected to the system.

$>$ When the water consumption is low, the residual water is pumped to the tank.
$>$ When the consumption is high the water flows back to the consumer area by gravity.

5-When the source is lower than the consumer area

$>$ A tank is constructed above the highest point in the area,
$>$ Then the water is pumped from the source to the storage tank (reservoir).
$>$ And the hence the water is distributed from the reservoir by gravity.

2.3 Distribution Systems (Network Configurations):

In laying the pipes through the distribution area, the following configuration can be distinguished:
$>$ Branching system (Tree)
$>$ Grid system (Looped)
$>$ Combined system

2.3.1 Branching System (Tree System)

Reservoir

\square Advantages:

$>$ Simple to design and build.
$>$ Less expensive than other systems.

\square Disadvantages:

$>$ The large number of dead ends which results in sedimentation and bacterial growths.
$>$ When repairs must be made to an individual line, service connections beyond the point of repair will be without water until the repairs are made.
$>$ The pressure at the end of the line may become undesirably low as additional extensions are made.

2.3.2 Grid System (Looped system)

\square Advantages:

$>$ The grid system overcomes all of the difficulties of the branching system discussed before.
$>$ No dead ends. (All of the pipes are interconnected).
> Water can reach a given point of withdrawal from several directions.

\square Disadvantages:

$>$ Hydraulically far more complicated than branching system (Determination of the pipe sizes is somewhat more complicated).
$>$ Expensive (consists of a large number of loops).

But, it is the most reliable and used system.

2.3.3 Combined System

$>$ It is a combination of both Grid and Branching systems.
$>$ This type is widely used all over the world.

Reservoir

2.4 Pipe Networks

The equations to solve Pipe network must satisfy the following condition:
$>$ The net flow into any junction must be zero.

$$
\sum Q=0
$$

$>$ The net head loss a round any closed loop must be zero. The HGL at each junction must have one and only one elevation
$>$ All head losses must satisfy the Moody and minor-loss friction correlation

2.4.1 Hardy Cross Method

$>$ This method is applicable to closed-loop pipe networks (a complex set of pipes in parallel).
$>$ It depends on the idea of head balance method
$>$ Was originally devised by professor Hardy Cross.

\square Assumptions / Steps of this method:

1-Assume that the water is withdrawn from nodes only; not directly from pipes.
2-The discharge, Q , entering the system will have (+) value, and the discharge, Q , leaving the system will have (-) value.
3-Usually neglect minor losses since these will be small with respect to those in long pipes, i.e.; Or could be included as equivalent lengths in each pipe.
4-Assume flows for each individual pipe in the network.
5-At any junction (node), as done for pipes in parallel,

$$
\sum Q_{\text {in }}=\sum Q_{\text {out }} \quad \text { or } \quad \sum Q=0
$$

6. Around any loop in the grid, the sum of head losses must equal to zero:

$$
\sum_{\text {loop }} h_{f}=0
$$

$>$ The probability of initially guessing all flow rates correctly is virtually null.
$>$ Therefore, to balance the head around each loop, a flow rate correction (Δ) for each loop in the network should be computed, and hence some iteration scheme is needed.

How to find the correction value (Δ)

$$
\begin{aligned}
& h_{F}=k Q^{n} \longrightarrow(1) \\
& n=2 \Rightarrow \text { Darcy, Manning } \\
& n=1.85 \Rightarrow \text { Hazen William }
\end{aligned}
$$

$$
Q=Q_{o}+\Delta \longrightarrow(2)
$$

from $1 \& 2$
$h_{\mathrm{f}}=k Q^{n}=k\left(Q_{o}+\Delta\right)^{n}=k\left[Q_{o}^{n}+n Q_{o}^{n-1} \Delta+\frac{n(n-1)}{2} Q_{o}^{n-2} \Delta^{2}+\ldots.\right]$
Neglect terms contains $\Delta^{2} \quad h_{\mathrm{f}}=k Q^{n}=k\left(Q_{o}^{n}+n Q_{o}^{n-1} \Delta\right)$
For each loop

$$
\begin{aligned}
& \sum_{\text {loop }} h_{F}=\sum_{\text {loop }} k Q^{n}=0 \\
& \therefore \sum k Q^{n}=\sum k Q_{o}^{n}+\sum n k Q^{(n-1)} \Delta=0
\end{aligned}
$$

$$
\Delta=\frac{-\sum k Q_{o}^{n}}{\sum n k Q_{o}^{(n-1)}}=\frac{-\sum h_{F}}{n \sum \frac{h_{F}}{Q_{o}}}
$$

- Note that if Hazen Williams (which is generally used in this method) is used to find the head losses, then

$$
\begin{array}{r}
h_{f}=k Q^{1.85} \\
\Delta=\frac{-\sum h_{f}}{1.85 \sum \frac{h_{f}}{Q}}
\end{array}
$$

- If Darcy-Wiesbach is used to find the head losses, then

$$
\begin{array}{r}
h_{f}=k Q^{2} \quad(n=2), \text { then } \\
\Delta=\frac{-\sum h_{f}}{2 \sum \frac{h_{f}}{Q}}
\end{array}
$$

Example 2-1

Solve the following pipe network using Hazen William Method $\mathrm{C}_{\mathrm{HW}}=100$

Solution

Loop	Pipe	$\begin{aligned} & \text { Dia } \\ & \text { (m) } \end{aligned}$	$\begin{gathered} \mathbf{L} \\ (\mathrm{m}) \end{gathered}$	K	$\begin{gathered} \mathbf{Q}_{\circ} \\ (\mathrm{L} / \mathrm{s}) \end{gathered}$	$\begin{gathered} \boldsymbol{h}_{f} \\ (\mathrm{~m}) \end{gathered}$	$\begin{aligned} & \hline \boldsymbol{h}_{f} / \mathrm{Q}_{0} \\ & (\mathrm{~m} / \mathrm{L} / \mathrm{s}) \end{aligned}$	$\begin{gathered} \text { Correction } \\ \mathrm{L} / \mathrm{s} \\ \hline \end{gathered}$	$\begin{gathered} \hline \mathrm{Q} \\ \mathrm{~L} / \mathrm{s} \end{gathered}$
1	1	0.150	305	0.0187	+24.0	+6.68	0.28	-0.24	+23.76
	2	0.150	305	0.0187	+11.4	+1.69	0.15	$-0.24+0.57$	+11.73
	3	0.200	610	0.0092	-39.0	-8.09	0.21	-0.24	-39.24
						+0.28	0.64		
2	2	0.150	305	0.0187	-11.4	-1.69	0.15	$-0.57+0.24$	-11.73
	4	0.150	457	0.0280	+12.6	+3.04	0.24	-0.57	+12.03
	5	0.200	153	0.0023	-25.2	-0.90	0.04	-0.57	-25.77
						+0.45	0.43		

for pipe 2 in loop 1
$\Delta=\Delta_{1}-\Delta_{2}$
for pipe 2 in loop 2
$\Delta=\Delta_{2}-\Delta_{1}$

Dr. Amir Mobasher

for pipe 2 in loop $\underline{1}$
$\Delta=\Delta_{1}-\Delta_{2}$
for pipe 2 in loop $\underline{2}$
$\Delta=\Delta_{2}-\Delta_{1}$

$\Delta_{1}=\frac{-\sum h_{F}}{n \sum \frac{h_{F}}{Q_{0}}}=\frac{-0.18}{1.85(0.64)}=-0.15$

Example 2-2

For the square loop shown, find the discharge in all the pipes. All pipes are 1 km long and 300 mm in diameter, with a friction factor of 0.0163 . Assume that minor losses can be neglected.

Solution

$$
\begin{aligned}
H_{L} & =h_{f}=F \frac{L}{D} \frac{V^{2}}{2 g}=\frac{8 F L}{g \pi^{2} D^{5}} Q^{2} \\
H_{L} & =\frac{8 x 0.0163 x 1000}{9.81 x \pi^{2} x 0.30^{5}} Q^{2} \\
H_{L} & =554 Q^{2} \\
H_{L} & =K^{\prime} Q^{2} \\
\therefore \quad K^{\prime} & =554
\end{aligned}
$$

1. First trial

Pipe	$\mathbf{Q}(L / s)$	$H_{L}(\mathbf{m})$	H_{L} / \mathbf{Q}
$A B$	60	2.0	0.033
$B C$	40	0.886	0.0222
$C D$	0	0	0
$A D$	-40	-0.886	0.0222
Σ		2.00	0.0774

Since $\sum H_{L}>0.01 \mathrm{~m}$, then correction has to be applied.

$$
\Delta Q=-\frac{\sum H_{L}}{2 \sum_{L} / Q}=-\frac{2}{2 x 0.0774}=-12.92 \mathrm{~L} / \mathrm{s}
$$

2. Second trial

Pipe	$\mathbf{Q}(\mathbf{L} / \mathbf{s})$	$\mathbf{H}_{\mathrm{L}}(\mathbf{m})$	$\mathbf{H}_{\mathrm{L}} / \mathbf{Q}$
$A B$	47.08	1.23	0.0261
BC	27.08	0.407	0.015
CD	-12.92	-0.092	0.007
AD	-52.92	-1.555	0.0294
Σ		-0.0107	0.07775

Since $\sum H_{L} \approx 0.01 \mathrm{~m}$, then it is 0 K .
Thus, the discharge in each pipe is as follows (to the nearest integer).

Pipe	Discharge (L/s)
$A B$	47
$B C$	27
$C D$	-13
$A D$	-53

Example 2-3

The following example contains nodes with different elevations and pressure heads. Neglecting minor loses in the pipes, determine:
$>$ The flows in the pipes.
$>$ The pressure heads at the nodes.

Pipe	AB	BC	CD	DE	EF	AF	BE
Length (m)	600	600	200	600	600	200	200
Diameter (mm)	250	150	100	150	150	200	100

Roughness size of all pipes $=0.06 \mathrm{~mm}$
Pressure head elevation at $A=70 \mathrm{~m}$ o.d.

Elevation of pipe nodes

Node	A	B	C	D	E	F
Elevation $(m$ o.d. $)$	30	25	20	20	22	25

Solution

Assume flows magnitude and direction

			$\xrightarrow{220} Q^{\text {A }} 120$			
First Iteration						$\underbrace{1}$
- Loop (1)						
Pipe	$\begin{gathered} L \\ (\mathbf{m}) \end{gathered}$	$\begin{gathered} \hline D \\ (\mathrm{~m}) \end{gathered}$	$\begin{gathered} Q \\ \left(\mathrm{~m}^{3} / \mathrm{s}\right) \end{gathered}$	f	$\begin{gathered} h_{f} \\ (\mathbf{m}) \end{gathered}$	$\begin{gathered} h_{f} / Q \\ \left(\mathrm{~m} / \mathrm{m}^{3} / \mathrm{s}\right) \end{gathered}$
$A B$	600	0.25	0.12	0.0157	11.48	95.64
BE	200	0.10	0.01	0.0205	3.38	338.06
EF	600	0.15	-0.06	0.0171	-40.25	670.77
$\boldsymbol{F A}$	200	0.20	-0.10	0.0162	-8.34	83.42
				Σ	-33.73	1187.89
2(1187.89)						
First Iteration \sim^{80}						
- Loop (2)						
Pipe	$\begin{gathered} L \\ (\mathrm{~m}) \end{gathered}$	$\begin{gathered} D \\ (\mathrm{~m}) \end{gathered}$	$\begin{gathered} Q \\ \left(\mathbf{m}^{3} / \mathbf{s}\right) \end{gathered}$	f	$\begin{gathered} \boldsymbol{h}_{\boldsymbol{f}} \\ (\mathrm{m}) \end{gathered}$	$\begin{gathered} h_{f} / Q \\ \left(\mathrm{~m} / \mathrm{m}^{3} / \mathrm{s}\right) \end{gathered}$
BC	600	0.15	0.05	0.0173	28.29	565.81
$C D$	200	0.10	0.01	0.0205	3.38	338.05
DE	600	0.15	-0.02	0.0189	-4.94	246.78
EB	200	0.10	-0.01	0.0205	-3.38	338.05
				Σ	23.35	1488.7
	$=-$	$\frac{35}{88.7)}$	0.0078	$\mathrm{n}^{3} / \mathrm{s}=$	842	

Second Iteration

- Loop (1)

Pipe	L $(\mathrm{~m})$	\boldsymbol{D} (m)	\boldsymbol{Q} $\left(\mathrm{m}^{3} / \mathrm{s}\right)$	\boldsymbol{f}	$\boldsymbol{h}_{\boldsymbol{f}}$ (m)	$\boldsymbol{h}_{\boldsymbol{f}} / \boldsymbol{Q}$ $\left(\mathrm{m} / \mathrm{m}^{3} / \mathrm{s}\right)$
$\boldsymbol{A B}$	600	0.25	0.1342	0.0156	14.27	$\mathbf{1 0 6 . 0 8}$
$\boldsymbol{B E}$	200	0.10	0.03204	0.0186	31.48	982.60
$\boldsymbol{E F}$	600	0.15	-0.0458	0.0174	-23.89	521.61
$\boldsymbol{F A}$	200	0.20	-0.0858	0.0163	-6.21	$\mathbf{7 2 . 3 3}$
				Σ	15.65	$\mathbf{1 6 8 2 . 6 2}$

Second Iteration

- Loop (2)

Pipe	L $(\mathrm{~m})$	\boldsymbol{D} (m)	\boldsymbol{Q} $\left(\mathrm{m}^{3} / \mathrm{s}\right)$	\boldsymbol{f}	$\boldsymbol{h}_{\boldsymbol{f}}$ (m)	$\boldsymbol{h}_{f} / \boldsymbol{Q}$ $\left(\mathrm{m} / \mathrm{m}^{3} / \mathrm{s}\right)$
$\boldsymbol{B C}$	600	0.15	0.04216	0.0176	20.37	483.24
$\boldsymbol{C D}$	200	0.10	0.00216	0.0261	0.20	93.23
$\boldsymbol{D E}$	600	0.15	-0.02784	0.0182	-9.22	331.23
$\boldsymbol{E} \boldsymbol{B}$	200	0.10	-0.03204	0.0186	-31.48	982.60
			Σ	-20.13	$\mathbf{1 8 9 0 . 6 0}$	

Third Iteration

- Loop (1)

Pipe	L $(\mathrm{~m})$	D $(\mathrm{~m})$	\boldsymbol{Q} $\left(\mathrm{m}^{3} / \mathrm{s}\right)$	f	$\boldsymbol{h}_{\boldsymbol{f}}$ (m)	\boldsymbol{h}_{f} / Q $\left(\mathrm{~m} / \mathrm{m}^{3} / \mathrm{s}\right)$
$\boldsymbol{A B}$	600	0.25	0.1296	0.0156	13.30	102.67
$\boldsymbol{B E}$	200	0.10	0.02207	0.0190	15.30	693.08
$\boldsymbol{E F}$	600	0.15	-0.05045	0.0173	-28.78	570.54
$\boldsymbol{F A}$	200	0.20	-0.09045	0.0163	-6.87	75.97
				Σ	-7.05	1442.26

$$
\Delta=-\frac{-7.05}{2(1442.26)}=0.00244 \mathrm{~m}^{3} / \mathrm{s}=2.44 \mathrm{~L} / \mathrm{s}
$$

Third Iteration

- Loop (2)

Pipe	L $(\mathrm{~m})$	D $(\mathrm{~m})$	Q $\left(\mathrm{~m}^{3} / \mathrm{s}\right)$	\boldsymbol{f}	\boldsymbol{h}_{f} $(\mathrm{~m})$	\boldsymbol{h}_{f} / Q $\left(\mathrm{~m} / \mathrm{m}^{3} / \mathrm{s}\right)$
$B C$	600	0.15	0.04748	0.0174	25.61	539.30
$\boldsymbol{C D}$	200	0.10	0.00748	0.0212	1.96	262.11
$D E$	600	0.15	-0.02252	0.0186	-6.17	274.07
$\boldsymbol{E B}$	200	0.10	-0.02207	0.0190	-15.30	693.08
				Σ	6.1	1768.56

$$
\Delta=-\frac{6.1}{2(1768.56)}=-0.00172 \mathrm{~m}^{3} / \mathrm{s}=-1.72 \mathrm{~L} / \mathrm{s}
$$

After applying Third

Velocity and Pressure Heads:

pipe	Q $(1 / \mathrm{s})$	V $(\mathrm{~m} / \mathrm{s})$	h_{f} $(\mathrm{~m})$
$\boldsymbol{A B}$	131.99	2.689	13.79
$\boldsymbol{B E}$	26.23	3.340	21.35
$\boldsymbol{F E}$	48.01	2.717	26.16
$\boldsymbol{A F}$	88.01	2.801	6.52
$\boldsymbol{B C}$	45.76	2.589	23.85
$\boldsymbol{C D}$	5.76	0.733	1.21
$\boldsymbol{E D}$	24.24	1.372	7.09

Node	$\begin{gathered} p / \gamma+Z \\ (\mathrm{~m}) \end{gathered}$	$\begin{gathered} Z \\ (\mathrm{~m}) \end{gathered}$	$\begin{aligned} & P / \gamma \\ & (\mathrm{m}) \end{aligned}$	$\xrightarrow{220} 0$	13.79	23.85
\boldsymbol{A}	70	30	40		$\xrightarrow{131.99}$	45.76
\boldsymbol{B}	56.21	25	31.21	$\begin{array}{r}88.01 \\ 6.52 \\ \hline\end{array}$	(1) 26.23	
C	32.36	20	12.36			
D	31.15	20	11.15			
\boldsymbol{E}	37.32	22	15.32		$\left.\begin{array}{ll} 48.01 \\ 26.16 \end{array} \quad \right\rvert\, \begin{aligned} & E \\ & \hline \end{aligned}$	24.24 7.09
\boldsymbol{F}	63.48	25	38.48			

Best regards,
Dr. Amir Mobasher

CHAPTER 3

PUMPS \& TURBINES

3.1 Introduction

Pumps are devices designed to convert mechanical energy to hydraulic energy. They are used to move water from lower points to higher points with a required discharge and pressure head. This chapter will deal with the basic hydraulic concepts of water pumps

3.2 Pump Classification

T Turbo-hydraulic (kinetic) pumps

$>$ Centrifugal pumps (radial-flow pumps)
$>$ Propeller pumps (axial-flow pumps)
$>$ Jet pumps (mixed-flow pumps)

\square Positive-displacement pumps

$>$ Screw pumps
$>$ Reciprocating pumps

This classification is based on the way by which the water leaves the rotating part of the pump.
In radial-flow pump the water leaves the impeller in radial direction, while in the axial-flow pump the water leaves the propeller in the axial direction.
In the mixed-flow pump the water leaves the impeller in an inclined direction having both radial and axial components

Radial

Axial

Mixed

3.2.1 Centrifugal Pumps

$>$ Broad range of applicable flows and heads
$>$ Higher heads can be achieved by increasing the diameter or the rotational speed of the impeller

3.2.2 Axial-flow Pump

3.2.3 Screw Pumps

In the screw pump a revolving shaft fitted with blades rotates in an inclined trough and pushes the water up the trough.

3.2.4 Reciprocating Pumps

In the reciprocating pump a piston sucks the fluid into a cylinder then pushes it up causing the water to rise.

3.3 Centrifugal Pumps

Centrifugal pumps (radial-flow pumps) are the most used pumps for hydraulic purposes. For this reason, their hydraulics will be studied in the following sections.

فؤ我

3.3.1 Main Parts of Centrifugal Pumps

[Impeller

$>$ Which is the rotating part of the centrifugal pump.
$>$ It consists of a series of backwards curved vanes (blades).
$>$ The impeller is driven by a shaft which is connected to the shaft of an electric motor.

\square Suction Pipe

\square Delivery Pipe
\square The Shaft: which is the bar by which the power is transmitted from the motor drive to the impeller.
\square The driving motor: which is responsible for rotating the shaft. It can be mounted directly on the pump, above it, or adjacent to it.

3.3.2 Hydraulic Analysis of Pumps and Piping Systems

- Case 1

- Case 2

\square The following terms can be defined

- h (static suction head): it is the difference in elevation between the suction liquid level and the centerline of the pump impeller.
- h_{d} (static discharge head): it is the difference in elevation between the discharge liquid level and the centerline of the pump impeller.
- $H_{\text {stat }}$ (static head): it is the difference (or sum) in elevation between the static discharge and the static suction heads:

$$
H_{\text {stat }}=h_{d} \pm h_{s}
$$

- $H_{m s}$ (manometric suction head): it is the suction gage reading (if a manometer is installed just at the inlet of the pump, then H is the height to which the water will rise in the manometer).
- H (manometric discharge head): it is the discharge gage reading (if a manometer is installed just at the outlet of the pump, then $H_{m d}$ is the height to which the water will rise in the manometer).
- H (manometric head): it is the increase of pressure head generated by the pump:

$$
H_{m}=H_{m d} \pm H_{m s}
$$

- H_{t} (total dynamic head): it is the total head delivered by the pump:

$$
\begin{equation*}
H_{t}=H_{m d}+\frac{V_{d}^{2}}{2 g}-\left(H_{m s}+\frac{V_{s}^{2}}{2 g}\right) \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
H_{t}=H_{m d}+\frac{V_{d}^{2}}{2 g}+\left(H_{m s}-\frac{V_{s}^{2}}{2 g}\right) \tag{tabular}
\end{equation*}
$$

- H_{t} can be written in another form as follows:

$$
\begin{aligned}
& H_{m d}=h_{d}+h_{f d}+\sum h_{m d} \\
& H_{m s}=h_{s}-h_{f s}-\sum h_{m s}-\frac{V_{s}^{2}}{2 g} \\
& H_{m s}=h_{s}+h_{f s}+\sum h_{m s}+\frac{V_{s}^{2}}{2 g}
\end{aligned}
$$

Case 2

Substitute ino eq. (1)

$$
H_{t}=h_{d}+h_{f d}+\sum h_{m d}+\frac{V_{d}^{2}}{2 g}-\left[h_{s}-h_{f s}-\sum h_{m s}-\frac{V_{s}^{2}}{2 g}+\frac{V_{s}^{2}}{2 g}\right]
$$

but

$$
H_{s t a t}=h_{d}-h_{s}
$$

$$
H_{t}=H_{s t a t}+h_{f d}+\sum h_{m d}+h_{f s}+\sum h_{m s}+\frac{V_{d}^{2}}{2 g} \quad \text { Eq.(3) } \quad \text { Case 1 }
$$

- Equation (3) can be applied to Case 2 with the exception that :

$$
H_{s t a t}=h_{d}+h_{s}
$$

In the above equations; we define:
$h_{f s}$: is the friction losses in the suction pipe.
$h_{f d}$: is the friction losses in the discharge (delivery) pipe.
$h_{m s}$: is the minor losses in the suction pipe.
$h_{m d}$ is the minor losses in the discharge (delivery) pipe.

- Bernoulli's equation can also be applied to find ${ }_{t}$

$$
H_{t}=\frac{P_{d}}{\gamma}+\frac{V_{d}^{2}}{2 g}+Z_{d} \pm\left(\frac{P_{s}}{\gamma}+\frac{V_{s}^{2}}{2 g}+Z_{s}\right)
$$

3.3.3 Pump Efficiency

Motor efficiency \times Pump efficiency $=$ Overall efficiency

$$
\eta_{\mathrm{m}} \times \quad \eta_{\mathrm{p}} \quad=\quad \eta_{\mathrm{t}}
$$

- Pump efficiency η_{p}

$$
\eta_{p}=\frac{\text { Power output }}{\text { Power input }}=\frac{P_{o}}{P_{i}}=\frac{\gamma Q H_{t}}{P_{i}}
$$

or

$$
P_{i}=\frac{\gamma Q H_{t}}{\eta_{p}}
$$

Which is the power input delivered from the motor to the impeller of the pump.

- Motor efficiency η_{m}

$$
\begin{aligned}
& \eta_{m}=\frac{P_{i}}{P_{m}} \\
& P_{m}=\frac{P_{i}}{\eta_{m}}
\end{aligned}
$$

which is the power input delivered to the motor.

- Overall efficiency of the motor-pump system η_{t}

$$
\begin{aligned}
\eta_{t} & =\eta_{p} \eta_{m} \\
\eta_{t} & =\frac{P_{o}}{P_{m}}
\end{aligned}
$$

Imprtant Units

Hydraulic water power $=\gamma\left(\mathrm{kg} / \mathrm{m}^{3}\right) \times \mathrm{Q}\left(\mathrm{m}^{3} / \mathrm{s}\right) \times \mathrm{H}_{\mathrm{req}}(\mathrm{m})$
Hydraulic Horsepower $(\mathbf{H P})=\gamma\left(\mathrm{kg} / \mathrm{m}^{3}\right) \times \mathrm{Q}\left(\mathrm{m}^{3} / \mathrm{s}\right) \times \mathrm{H}_{\mathrm{req}}(\mathrm{m}) / 75$
($1 \mathrm{HP}=75 \mathrm{~kg} . \mathrm{m} / \mathrm{sec}$)

Electrical input power (HP) = Hydraulic water power $/ \eta_{t}$
Electrical input power $(\mathbf{K W})=\left(\right.$ Hydraulic water power $\left./ \eta_{\mathrm{t}}\right) \times 0.746$
$1 \mathrm{KW}=0.746 \mathrm{HP}$

Required Pump Motor Power $\geq \mathbf{1 . 2 0}$ (factor of safety) \mathbf{x} Electrical input power

3.3.4 Cavitation of Pumps and NPSH

$>$ In general, cavitation occurs when the liquid pressure at a given location is reduced to the vapor pressure of the liquid.
$>$ For a piping system that includes a pump, cavitation occurs when the absolute pressure at the inlet falls below the vapor pressure of the water.
$>$ This phenomenon may occur at the inlet to a pump and on the impeller blades, particularly if the pump is mounted above the level in the suction reservoir.
$>$ Under this condition, vapor bubbles form (water starts to boil) at the impeller inlet and when these bubbles are carried into a zone of higher pressure, they collapse abruptly and hit the vanes of the impeller (near the tips of the impeller vanes). causing:

- Damage to the pump (pump impeller)
- Violet vibrations (and noise).
- Reduce pump capacity.
- Reduce pump efficiency

- How we avoid Cavitation ??

$>$ To avoid cavitation, the pressure head at the inlet should not fall below a certain minimum which is influenced by the further reduction in pressure within the pump impeller.
$>$ To accomplish this, we use the difference between the total head at the inlet $\frac{P_{s}}{\gamma}+\frac{V_{s}^{2}}{2 g}$, and the water vapor pressure head $\frac{P_{\text {vapor }}}{\gamma}$

Where we take the datum through the centerline of the pump impeller inlet (eye). This difference is called the Net Positive Suction Head (NPSH), so that

$$
N P S H=\frac{P_{s}}{\gamma}+\frac{V_{s}^{2}}{2 g}-\frac{P_{\text {vapor }}}{\gamma}
$$

There are two values of NPSH of interest. The first is the required NPSH, denoted $(\mathbb{N P S H})_{R}$, that must be maintained or exceeded so that cavitation will not occur and usually determined experimentally and provided by the manufacturer.

The second value for NPSH of concern is the available NPSH, denoted $(\mathbf{N P S H})_{A}$, which represents the head that actually occurs for the particular piping system. This value can be determined experimentally, or calculated if the system parameters are known.

- For proper pump operation (no cavitation) :

$$
(N P S H)_{A}>(N P S H)_{R}
$$

Determination of (NPSH)

Applying the energy equation

 between point (1) and (2), datum at pump center line$\frac{P_{a t m}}{\gamma}-h_{S}=\frac{P_{S}}{\gamma}+\frac{V_{S}^{2}}{2 g}+\sum h_{L}$
$\frac{P_{S}}{\gamma}+\frac{V_{S}^{2}}{2 g}=\frac{P_{a t m}}{\gamma}-h_{S}-\sum h_{L}$
$\frac{P_{S}}{\gamma}+\frac{V_{S}^{2}}{2 g}-\frac{P_{\text {Vapor }}}{\gamma}=\frac{P_{a t m}}{\gamma}-h_{S}-\sum h_{L}-\frac{P_{\text {Vapor }}}{\gamma}$
$(N P S H)_{A}=\frac{P_{a t m}}{\gamma}-h_{S}-\sum h_{L}-\frac{P_{\text {Vapor }}}{\gamma}$

$$
(N P S H)_{A}=\mp h_{s}-h_{f s}-\sum h_{m s}+\frac{P_{a t m}}{\gamma}-\frac{P_{v a p o r}}{\gamma}
$$

Note that $(+)$ is used if h_{s} is above the pump centerline (datum).

$$
\begin{aligned}
& \text { at } \mathrm{T}=20^{\circ} \\
& P_{a t m}=10.14 \mathrm{kN} / \mathrm{m}^{2} \\
& P_{\text {Vapor }}=2.335 \mathrm{kN} / \mathrm{m}^{2}
\end{aligned}
$$

\square Thoma's cavitation constant

The cavitation constant: is the ratio of $(\mathrm{NPSH})_{R}$ to the total dynamic head (H) is known as the Thoma's cavitation constant (σ)

$$
\sigma=\frac{(N P S H)_{R}}{H_{t}}
$$

3.3.5 Selection of A Pump

$>$ The design conditions are specified and a pump is selected for the range of applications.
$>$ A system characteristic curve $(\mathrm{H}-\mathrm{Q})$ is then prepared.
$>$ The $\mathrm{H}-\mathrm{Q}$ curve is then matched to the pump characteristics chart which is provided by the manufacturer.
$>$ The matching point (operating point) indicates the actual working conditions.

- System Characteristic Curve

$>$ The total head, H_{t}, that the pump delivers includes the elevation head and the head losses incurred in the system. The friction loss and other minor losses in the pipeline depend on the velocity of the water in the pipe, and hence the total head loss can be related to the discharge rate
$>$ For a given pipeline system (including a pump or a group of pumps), a unique system head-capacity ($\mathrm{H}-\mathrm{Q}$) curve can be plotted. This curve is usually referred to as a system characteristic curve or simply system curve. It is a graphic representation of the system head and is developed by plotting the total head, over a range of flow rates starting from zero to the maximum expected value of Q .

$$
H_{t}=H_{s t a t}+\sum h_{L}
$$

- Pump Characteristic Curves

$>$ Pump manufacturers provide information on the performance of their pumps in the form of curves, commonly called pump characteristic curves (or simply pump curves).
$>$ In pump curves the following information may be given:

- the discharge on the x-axis,
- the head on the left y-axis,
- the pump power input on the right y-axis,
- the pump efficiency as a percentage,
- the speed of the pump (rpm = revolutions/min).
- the NPSH of the pump.

$>$ The pump characteristic curves are very important to help select the required pump for the specified conditions.
If the system curve is plotted on the pump curves in we may produce the following Figure:

Matching the system and pump curves.
$>$ The point of intersection is called the operating point.
This matching point indicates the actual working conditions, and therefore the proper pump that satisfy all required performance characteristic is selected.

Example 3-1

A Pump has a cavitation constant $=0.12$, this pump was instructed on well using UPVC pipe of 10 m length and 200 mm diameter, there are elbow $\left(\mathrm{k}_{\mathrm{e}}=1\right)$ and valve $\left(\mathrm{k}_{\mathrm{e}}=4.5\right)$ in the system. The flow is $35 \mathrm{~m}^{3}$ and the total Dynamic Head $\mathrm{H}_{\mathrm{t}}=25 \mathrm{~m}$ (from pump curve) $\mathrm{f}=0.0167$

Calculate the maximum suction head

$$
\begin{aligned}
& \text { atm. pressurehead }=9.69 \mathrm{~m} \\
& \text { Vapour pressurehead }=0.2 \mathrm{~m}
\end{aligned}
$$

Solution

$$
\begin{aligned}
& \sigma=0.12 \\
& N P S H_{R}=\sigma \times H_{t}=0.12 \times 25=3 \\
& (N P S H)_{A}= \pm h_{S}-h_{f S}-\sum h_{m S}+\frac{P_{\text {atm }}}{\gamma}-\frac{P_{\text {Vapor }}}{\gamma} \\
& V_{S}=\frac{Q}{A}=\frac{0.035}{\pi / 4 \times(0.2)^{2}}=1.11 \mathrm{~m} / \mathrm{s} \\
& h_{e}=\frac{V_{S}^{2}}{2 g}=\frac{1.11^{2}}{2 g}=0.063 \quad h_{V}=4.5 \frac{V_{S}^{2}}{2 g}=4.5 \times \frac{1.11^{2}}{2 g}=0.283 \mathrm{~m} \\
& h_{f S}=f \frac{L}{D} \times \frac{V^{2}}{2 g}=0.0167 \times \frac{10}{0.2} \times \frac{1.11^{2}}{2 g}=0.053 \mathrm{~m} \\
& (N P S H)_{A}= \pm h_{S}-h_{f S}-\sum h_{m S}+\frac{P_{\text {atm }}}{\gamma}-\frac{P_{\text {Vapor }}}{\gamma} \\
& 3=h_{S}-0.053-(0.283+0.063)+(9.69)-0.2 \\
& h_{S}=-6.088 m
\end{aligned}
$$

Example 3-2

For the following pump, determine the required pipes diameter to pump 60 L / s and also calculate the needed power.
Minor losses $10 \mathrm{v}^{2} / 2 \mathrm{~g}$
Pipe length 10 km
roughness $=0.15 \mathrm{~mm}$
$\mathrm{H}_{\mathrm{s}}=20 \mathrm{~m}$

Q L / s	70	60	50	40	30	20	10	0
H_{t}	31	35	38	40.6	42.5	43.7	44.7	45
	40	53	60	60	57	50	35	-

Solution

To get $60 \mathrm{~L} / \mathrm{s}$ from the pump $H_{s}+h_{L}$ must be $<35 \mathrm{~m}$
Assume the diameter $=300 \mathrm{~mm}$ Then:

$$
\begin{aligned}
& A=0.070 \mathrm{~m}^{2}, V=0.85 \mathrm{~m} / \mathrm{s} \\
& R_{e}=2.25 \times 10^{5}, K_{S} / D=0.0005, f=0.019 \\
& h_{f}=\frac{0.019 \times 10000 \times(0.85)^{2}}{0.3 \times 19.62}=23.32 \mathrm{~m}
\end{aligned}
$$

$$
h_{m}=\frac{10 \times V^{2}}{2 g}=\frac{10 \times(0.85)^{2}}{2 g}=0.37 \mathrm{~m}
$$

$$
h_{s}+h_{f}+h_{m}=43.69 m>35 m
$$

Assume the diameter $=350 \mathrm{~mm}$ Then:

$$
\begin{aligned}
& A=0.0962 \mathrm{~m}^{2}, V=0.624 \mathrm{~m} / \mathrm{s} \\
& R_{e}=1.93 \times 10^{5}, K_{S} / D=0.00043, f=0.0185 \\
& h_{f}=10.48 \mathrm{~m}, \\
& h_{m}=\frac{10 \times V^{2}}{2 g}=\frac{10 \times(0.624)^{2}}{2 g}=0.2 \mathrm{~m} \\
& \therefore h_{s}+h_{f}+h_{m}=30.68 \mathrm{~m}<35 \mathrm{~m}
\end{aligned}
$$

The pump would deliver approximately $70 \mathrm{l} / \mathrm{s}$ through the 350 mm pipe and to regulate the flow to $60 \mathrm{l} / \mathrm{s}$ an additional head loss of 4.32 m by valve closure would be required.

$$
P_{i}=\frac{\gamma Q H_{t}}{\eta_{p}}=\frac{1000 \times 9.81 \times \frac{60}{1000} \times 35}{0.53}=38869.8 \mathrm{~W}=38.87 \mathrm{~kW}
$$

Example 3-3

A pump was designed to satisfy the following system:

$Q\left(m^{3} / h r\right)$	3	6	9
$h_{f}(\mathrm{~m})$	12	20	38

Check whether the pump is suitable or not

Solution

1- Draw the system curve and check the operation point
$\mathrm{H}_{\text {STAT }}=\mathrm{h}_{\mathrm{d}}+\mathrm{h}_{\mathrm{S}}=13+7=20 \mathrm{~m}$

There are an operation point at:
$\mathrm{Q}=9 \mathrm{~m}^{3} / \mathrm{hr} \quad \mathrm{H}=58 \mathrm{~m}$
$\mathrm{NPSH}_{\mathrm{R}}=4.1$
Then Check NPSH ${ }_{A}$
$V=\frac{Q}{A}=\frac{9 / 3600}{\frac{\pi}{4} \times(0.05)^{2}}=1.27 \mathrm{~m} / \mathrm{s}$
$h_{L}=\frac{24 \times(1.27)^{2}}{2 g}=2.0 \mathrm{~m}$
$(\mathrm{NPSH})_{\mathrm{A}}= \pm \mathrm{h}_{\mathrm{S}}-\mathrm{h}_{f \mathrm{~S}}-\sum \mathrm{h}_{\mathrm{mS}}+\frac{\mathrm{P}_{\mathrm{atm}}}{\gamma}-\frac{\mathrm{P}_{\text {Vapor }}}{\gamma}$
$(\mathrm{NPSH})_{\mathrm{A}}=-7-2+10.3-0.25$
$(\mathrm{NPSH})_{\mathrm{A}}=1.05<4.1$
pump is not suitable, the cavitation will occur

3.3.6 Multiple-Pump Operation

To install a pumping station that can be effectively operated over a large range of fluctuations in both discharge and pressure head, it may be advantageous to install several identical pumps at the station.

series

parallel
\&
series

- Parallel Operation

$>$ Pumping stations frequently contain several (two or more) pumps in a parallel arrangement.
$>$ The objective being to deliver a range of discharges, i.e.; the discharge is increased but the pressure head remains the same as with a single pump.

$$
Q_{\text {total }}=Q_{1}+Q_{2}+Q_{3}
$$

How to draw the pump curve for pumps in parallel???

- The manufacturer gives the pump curve for a single pump operation only.
- If two or pumps are in operation, the pumps curve should be calculated and drawn using the single pump curve.
- For pumps in parallel, the curve of two pumps, for example, is produced by adding the discharges of the two pumps at the same head (assuming identical pumps).

$$
\begin{aligned}
& \mathrm{Q}=\mathrm{Q}_{1}+\mathrm{Q}_{2}+\mathrm{Q}_{3}+\cdots \cdots \cdots=\mathrm{Q}_{\mathrm{n}}=\sum_{\mathrm{j}=1}^{\mathrm{j}=\mathrm{n}} \mathrm{Q} \\
& \mathrm{H}_{\mathrm{m}}=\mathrm{H}_{\mathrm{ml} 1}=\mathrm{H}_{\mathrm{m} 2}=\mathrm{H}_{\mathrm{m} 3}=\cdots \cdots \cdots \cdot=\mathrm{H}_{\mathrm{mn}}
\end{aligned}
$$

Discharge

\square Series Operation

$>$ The series configuration which is used whenever we need to increase the pressure head and keep the discharge approximately the same as that of a single pump.
$>$ This configuration is the basis of multistage pumps; the discharge from the first pump (or stage) is delivered to the inlet of the second pump, and so on.
$>$ The same discharge passes through each pump receiving a pressure boost in doing so.

$$
H_{\text {total }}=H_{1}+H_{2}+H_{3}
$$

How to draw the pump curve for pumps in series???

- the manufacturer gives the pump curve for a single pump operation only.
- For pumps in series, the curve of two pumps, for example, is produced by adding the heads of the two pumps at the same discharge.
- Note that, of course, all pumps in a series system must be operating simultaneously

Example 3-4

A centrifugal pump running at 1000 rpm gave the following relation between head and discharge:

Discharge $\left(\mathrm{m}^{3} / \mathrm{min}\right)$	0	4.5	9.0	13.5	18.0	22.5
Head (m)	22.5	22.2	21.6	19.5	14.1	0

The pump is connected to a 300 mm suction and delivery pipe the total length of which is 69 m and the discharge to atmosphere is 15 m above sump level. The entrance loss is equivalent to an additional 6 m of pipe and f is assumed as 0.024 . Calculate the discharge in m^{3} per minute.

Solution

1) System curve:

- The head required from pump =

$$
\text { static }+ \text { friction }+ \text { velocity head }
$$

$$
H_{t}=H_{s t a t}+h_{f d}+\sum h_{m d}+h_{f s}+\sum h_{m s}+\frac{V_{d}^{2}}{2 g}
$$

- $H_{\text {stat }}=15 \mathrm{~m}$
- Friction losses (including equivalent entrance losses) $=$

$$
\begin{aligned}
& \sum h_{f s}+h_{m s}+\sum h_{f d}+h_{m d}=\frac{8 f L Q^{2}}{\pi^{2} g D^{5}} \\
& =\frac{8 \times 0.024 \times(69+6)}{\pi^{2} g(0.3)^{5}} Q^{2} \\
& =61.21 Q^{2} \quad \text { where } Q \text { in } \mathrm{m}^{3} / \mathrm{s}
\end{aligned}
$$

- Velocity head in delivery pipe $=\frac{V_{d}^{2}}{2 g}=\frac{1}{2 g}\left(\frac{Q}{A}\right)^{2}=10.2 Q^{2}$ where Q in $\mathrm{m}^{3} / \mathrm{s}$

Thus:

- $H_{t}=15+71.41 Q^{2} \quad$ where Q in $\mathrm{m}^{3} / \mathrm{s}$
or
- $H_{t}=15+19.83 \times 10^{-3} Q^{2}$ where Q in $\mathrm{m}^{3} / \mathrm{min}$
- From this equation and the figures given in the problem the following table is compiled:

Discharge (m3/min)	0	4.5	9.0	13.5	18.0	22.5
Head available (m)	22.5	22.2	21.6	19.5	14.1	0
Head required (m)	15.0	15.4	16.6	18.6	21.4	25.0

From the previous Figure, The operating point is:

- $Q_{A}=14 \mathrm{~m} / \mathrm{min} H_{A}=19 \mathrm{~m}$

Example 3-5

A centrifugal pump is used to deliver water against a static lift of 10.50 m . The head loss due to friction $=150000 \mathrm{Q}^{2}$, head loss is in m and the flow is in Q in $\mathrm{m}^{3} / \mathrm{s}$. The pump characteristic is given in the following table. Deduce operating head and flow.

$\mathbf{H}(\mathbf{m})$	30	27	24	18	12	6
$\mathbf{Q}(\mathbf{L} / \mathbf{s})$	0	6.9	11.4	15.8	18.9	21.5
$\boldsymbol{\eta}$	0	60	70	65	40	20

- Sketch the pump's characteristic curves for the case of two pumps connected in parallel
- Sketch the pump's characteristic curves for the case of two pumps connected in series

Solution

\square Pump curve

$\mathbf{H}(\mathbf{m})$	30	27	24	18	12	6
$\mathbf{Q}(\mathbf{L} / \mathbf{s})$	0	6.9	11.4	15.8	18.9	21.5
$\mathbf{\eta}$	0	60	70	65	40	20

- System curve
- $H_{t}=10.50+150000 Q^{2} \quad$ where Q in $\mathrm{m}^{3} / \mathrm{s}$
or
- $H_{t}=10.50+0.15 Q^{2} \quad$ where Q in $1 / \mathrm{s}$

$\mathbf{Q}(\mathbf{L} / \mathbf{s})$	0	6.9	11.4	15.8	18.9	21.5
$\mathbf{H}_{\text {system }}(\mathbf{m})$	10.5	17.64	30	47.95	64.08	79.84

$\square 2$ pumps in parallel

\mathbf{H}	30	27	24	18	12	6
$\mathbf{2} \mathbf{Q}$	0	13.8	22.8	31.6	37.8	43

02 pumps in series

$\mathbf{2 H}$	60	54	48	36	24	12
\mathbf{Q}	0	6.9	11.4	15.8	18.9	21.5

- 1 pump
$Q=10 \mathrm{l} / \mathrm{s} \quad H=25 \mathrm{~m} \quad \eta=0.69 \mathrm{~m}$

$$
P_{i}=\frac{\gamma Q H_{t}}{\eta_{p}}=\frac{9810 \times 0.01 \times 25}{0.69}=3554.35 \mathrm{~W}=3.55 \mathrm{~kW}
$$

- 2 pumps in parallel
$Q=11 \mathrm{l} / \mathrm{s}$
$H=28 \mathrm{~m}$
$\eta=0.5 \mathrm{~m}$

Power of one pump:

$$
P_{i}=\frac{\gamma Q H_{t}}{\eta_{p}}=\frac{9810 \times \frac{0.011}{2} \times 28}{0.50}=3021.48 \mathrm{~W}=3.02 \mathrm{~kW}
$$

Total motor Power:

$$
P_{i}=\frac{\gamma Q H_{t}}{\eta_{p}}=\frac{9810 \times 0.011 \times 28}{0.50}=6042.96 \mathrm{~W}=6.04 \mathrm{~kW}
$$

- 2 pumps in series
$Q=14.50 \mathrm{l} / \mathrm{s} \quad H=41 \mathrm{~m} \quad \eta=0.68 \mathrm{~m}$
Power of one pump:

$$
P_{i}=\frac{\gamma Q H_{t}}{\eta_{p}}=\frac{9810 \times 0.0145 \times \frac{41}{2}}{0.68}=4288.27 \mathrm{~W}=4.29 \mathrm{~kW}
$$

Total motor Power:

$$
P_{i}=\frac{\gamma Q H_{t}}{\eta_{p}}=\frac{9810 \times 0.0145 \times 41}{0.68}=8576.54 \mathrm{~W}=8.58 \mathrm{~kW}
$$

3.4 Hydraulic Turbines

$>$ Hydraulic Turbines (water wheels) have been in use for centuries.
$>$ Hydraulic Turbines convert the potential energy of water into work.
$>$ Basic Turbines are either Reaction or Impulse.
$>$ First developed in the mid 1800's.
$>$ Power outputs range up to $1,000 \mathrm{Mw}$.
> Included are Tidal and Wind Turbines.

3.4.1 Early Hydraulic Turbines

$>$ Amount of power depended on wheel diameter and height of water.

3.4.2 Hydraulic Turbine Types

- Hydraulic Turbine - Kaplan - Reaction

- Hydraulic Turbine - Francis - Reaction

$\square \quad$ Hydraulic Turbine - Pelton - Impulse

- Hydraulic Turbine - Turgo - Reaction

- Hydraulic Turbine - Cross-flow - Impulse

[] Hydraulic Turbine - Tidal Power

- Hydraulic Turbine - Wave Power

3.4.3 Efficiency

Input Electric

PUMP

 OutputWater
$\eta=\frac{\text { Outpot }}{\text { Input }}=\frac{\gamma Q H}{\text { Input }}$

Input
 Water

Turbine
Output
Electric
$\eta=\frac{\text { Outpot }}{\text { Input }}=\frac{\text { Outpot }}{\gamma Q H}$

- Pump's Power

$$
\begin{aligned}
& P=\frac{\gamma Q H}{\eta}=\ldots . . . \text { Watt } \\
& H P=\frac{\gamma Q H}{\eta k}=\ldots . . . \text { Horsepower }
\end{aligned}
$$

- Turbine's Power

$$
P=\gamma Q H \eta=. W a t t
$$

$H P=\frac{\gamma Q H \eta}{k}=\ldots . .$. Horsepower

γ	$1000 \mathrm{~kg} / \mathrm{m}^{3}$	$9810 \mathrm{~N} / \mathrm{m}^{3}$	$62.42 \mathrm{Ib} / \mathrm{ft}^{3}$
k	75	735	550

Example 3-6

In a hydroelectric power plant, $100 \mathrm{~m}^{3} / \mathrm{s}$ of water flows from an elevation of 120 m to a turbine, where electric power is generated. The total irreversible head loss in the piping system from point 1 to point 2 (excluding the turbine unit) is determined to be 35 m . If the overall efficiency of the turbine-generator is 80 percent, estimate the electric power output.

Solution

Use the steady head form of the energy equation for a single stream

$$
\begin{aligned}
z_{1}+\frac{p_{1}}{\gamma}+\frac{v_{1}^{2}}{2 g} & =z_{2}+\frac{p_{2}}{\gamma}+\frac{v_{2}^{2}}{2 g}+h_{L}+H_{T} \\
120+0+0 & =0+0+0+35+H_{T} \\
\mathrm{H}_{\mathrm{T}} & =85 \mathrm{~m}
\end{aligned}
$$

$P=9810 x 100 \times 85 x 0.80=66.70 \mathrm{MW}$

$$
H P=\frac{1000 \times 100 \times 85 \times 0.80}{75}=90666.67 \text { Horsepower }
$$

Example 3-7

Water flows from an upper reservoir to a lower one while passing through a turbine, as shown in Fig. Find the power generated by the turbine. Neglect minor losses. The efficiency of the turbine-generator is 90 percent

Solution

$$
\begin{gathered}
z_{1}+\frac{p_{1}}{\gamma}+\frac{v_{1}^{2}}{2 g}=z_{2}+\frac{p_{2}}{\gamma}+\frac{v_{2}^{2}}{2 g}+h_{L}+H_{T} \\
h_{L}=h_{f}=\frac{8 F L}{g \pi^{2} D^{5}} Q^{2}=\frac{8 \times 0.019 \times 100 \times 0.15^{2}}{9.81 \times \pi^{2} \times 0.25^{5}}=3.65 \mathrm{~m} \\
147.30+0+0=0+0+0+3.65+H_{T} \\
\mathrm{H}_{\mathrm{T}}=143.65 \mathrm{~m} \\
P=9810 \times 0.15 \times 143.65 \times 0.90=190.20 \mathrm{~kW} \\
H P=\frac{1000 x 0.15 \times 143.65 \times 0.90}{75}=258.57 \text { Horsepower }
\end{gathered}
$$

Or HP = 190.20 $/ \mathbf{0 . 7 4 6}=\mathbf{2 5 5}$ Horsepower

Best regards, Dr. Amir Mobasher

CHAPTER 4

MOMENTUM PRINCIPLE

4.1 Development of the Momentum Equation معادثلة كمبة الحركة:

It is based on the law of conservation of momentum principle, which states that "the net force acting on a fluid mass is equal to the change in momentum of flow per unit time in that direction" .the force acting on fluid mass " m " is given by the Newton's second law of motion
$\mathbf{F}=\mathbf{m x a}$
Where a is the acceleration acting in the same direction as force F
But
$a=\frac{d v}{d t}$
$F=m \frac{d v}{d t}$
" \mathbf{m} " is constant and can be taken inside the differential
$\mathrm{T}=\frac{d(\boldsymbol{m} v)}{d t}$ is known as "the momentum principle"
This equation can be written as:
$\mathbf{F d t}=\mathbf{d}(\mathbf{m v})$

Which is known as "the impulse -momentum equation" and states that:
The impulse of a force acting on a fluid of mass in short interval of time is equal to the change of momentum $(\mathbf{d}(\mathbf{m v}))$ in the direction of force.

4.2 Force exerted by a flowing fluid on a Pipe - Bend

The "impulse-momentum equation" is used to determine the resultant force exerted by a flowing fluid on a pipe bend.

Consider two section (1) and (2), as shown in Fig
Let,
$\mathrm{V}_{1}=$ Velocity of flow at section (1),
$P_{1}=$ Pressure intensity at section (1),
$\mathrm{A}_{1}=$ Area of cross-section of pipe at section (1) and ,
$\mathrm{V}_{1}, \mathrm{P}_{1}, \mathrm{~A}_{1}$ Corresponding values of velocity, pressure and area at section (2).
$>$ Let " F_{x} " and " F_{y} " be the components of the forces exerted by the flowing fluid on the bend in " x " and " y " direction respectively.
$>$ Then the force exerted by the bend on the fluid in the "x" and " y " direction will be equal to " F_{x} " and " F_{y} " but in the opposite direction.
$>$ The momentum equation in "x" direction is given by:

| Total force exerted |
| :--- | :--- |
| on the fluid in a |
| control volume in |
| a given direction |$=$| Rate of change of |
| :--- |
| momentum in the given |
| direction of the fluid passing |
| through the control volume |

$$
\sum F_{e x t}=\left(\sum \rho Q V\right)_{o u t}-\left(\sum \rho Q\right)_{i n}
$$

$P_{1} A_{1}-P_{2} A_{2} \cos \theta-F_{x}=$ (Mass per sec) (change of velocity)
$P_{1} A_{1}-P_{2} A_{2} \cos \theta-F_{x}=\rho Q\left(V_{2} \cos \theta-V_{1}\right)$
$F_{x}=\rho Q\left(V_{1}-V_{2} \cos \theta\right)+P_{1} A_{1}-P_{2} A_{2} \cos \theta$

Similarly the momentum equation in " y " direction gives
$0-P_{2} A_{2} \sin \theta-F_{y}=\rho \mathbf{Q}\left(V_{2} \sin \theta-0\right)$
$\mathbf{F}_{\mathrm{y}}=\rho \mathbf{Q}\left(-\mathbf{V}_{\mathbf{2}} \sin \theta\right)-\mathbf{P}_{\mathbf{2}} \mathbf{A}_{\mathbf{2}} \sin \theta$
Now the resultant force F_{R} acting on the bend

$$
F_{R}=\sqrt{F_{x}^{2}+F_{y}^{2}}
$$

And the angle made by the resultant force with horizontal direction is given by

$$
\tan \theta=\frac{F_{y}}{F_{x}}
$$

4.3 Applications of the Linear Momentum Equation:

$>$ A jet of fluid deflected by an object puts a force on the object. This force is the result of the change of momentum of the fluid and can happen even though the speed (magnitude of velocity) remains constant. If a jet of water has sufficient momentum, it can tip over the block that deflects it.
$>$ The same thing can happen when a garden hose is used to fill sprinkles.
$>$ Similarly, a jet of water against the blades of a Pelton wheel turbine causes the turbine wheel to rotate.

Problem 4-1:

A nozzle 5 cm diameter delivers a jet of water that strikes a flat plate normally. If the jet velocity is $60 \mathrm{~m} / \mathrm{sec}$, calculate he force acting on the plate if:

- The plate is stationary.
- The plate is moving at $20 \mathrm{~m} / \mathrm{sec}$. in the same direction of the jet.
- If the plate is replaced by a series of plates moving at the same speed, determine the rate of doing work and the efficiency of the system.

Solution

a) $\mathrm{Fx}=\rho \mathrm{Qv}=1000 * \pi(0.05)^{2} / 4 * 60 * 60=7068.58 \mathrm{~N}$
b) $\mathrm{Fx}=\rho \mathrm{Q}_{\mathrm{r}} \mathrm{v}_{\mathrm{r}}=1000 * \pi(0.05)^{2} / 4 *(60-20) *(60-20)=3141.6 \mathrm{~N}$
c) $\mathrm{Fx}=\rho \mathrm{Q} \mathrm{v}_{\mathrm{r}}=1000 * \pi(0.05)^{2} / 4 * 60 *(60-20)=4712.4 \mathrm{~N}$

Output power $=\mathrm{Fx} * \mathrm{u}=4712.4 * 20=94247.78$ watt
Input power $=\gamma \mathrm{Q} \mathrm{H}=\gamma \mathrm{Qv}^{2} / 2 \mathrm{~g}=$
$=9810 * \pi(0.05)^{2} / 4 * 60 *(60)^{2} / 2 \mathrm{~g}=212057.5$ watt
$\eta=$ Output power $/$ input power $=44.44 \%$

Problem 4-2:

Determine the components of divided discharge in the plate direction, and the force exerted by a jet of water that has an area of $6.5 \mathrm{~cm}^{2}$ and moves at $30 \mathrm{~m} / \mathrm{sec}$ on an inclined fixed flat plate as a function of its angle of inclination to the jet direction.

Solution

$$
\begin{align*}
& \mathrm{Fs}=0 \\
& \mathrm{Q}=\mathrm{Q}_{1}+\mathrm{Q}_{2} \tag{1}
\end{align*}
$$

$F s=\rho Q v \cos \theta-\left(\rho Q_{1} v-\rho Q_{2} v\right)=0$

$$
\begin{equation*}
\mathrm{Q} \cos \theta=\mathrm{Q}_{1}-\mathrm{Q}_{2} \tag{2}
\end{equation*}
$$

By solving 1 \& 2

$$
\mathrm{Q}_{1}=\mathrm{Q}(1+\cos \theta) / 2
$$

$$
\mathrm{Q}_{2}=\mathrm{Q}(1-\cos \theta) / 2
$$

$$
\mathrm{Fn}=\rho \mathrm{Q} v \sin \theta
$$

$$
F x=F n \sin \theta=\rho Q v \sin ^{2} \theta
$$

$F y=-F n \cos \theta=-\rho Q v \sin \theta \cos \theta$

Problem 4-3: A jet of water having a velocity of $30 \mathrm{~m} / \mathrm{sec}$ and area $10 \mathrm{~cm}^{2}$ impinges on a curved vane. The jet approaches the vane horizontally and deviates an angle of 120°. Calculate the force acting on the vane if it is:

- Stationary.
- Moving at $15 \mathrm{~m} / \mathrm{sec}$ in the direction of the jet.
- If the vane is replaced by a series of vanes moving at the same speed, calculate the output power and the efficiency of the system.

Solutio

a) $\mathrm{Fx}=\rho \mathrm{Qv}-(-\rho \mathrm{Qv} \cos 60)=\rho \mathrm{Qv}(1+\cos 60)$

$$
=1000 * 10 * 10^{-4} * 30 * 30(1+0.5)=1350 \mathrm{~N}
$$

$$
\mathrm{Fy}=\rho \mathrm{Q} v \sin 60=1000 * 10 * 10^{-4} * 30 * 30 \sin 60=779.42 \mathrm{~N}
$$

$$
\mathrm{R}=\sqrt{ } \mathrm{Fx}^{2}+\mathrm{Fy}^{2}=1558.85 \mathrm{~N}
$$

$$
\theta=\tan ^{-1}(\mathrm{Fy} / \mathrm{Fx})=30^{\circ}
$$

b) $F x=\rho Q_{r} v_{r}(1+\cos 60)=1000 * 10 * 10^{-4} *(30-15) *(30-15) * 1.5=337.5 \mathrm{~N}$ $\mathrm{Fy}=\rho \mathrm{Q}_{\mathrm{r}} \mathrm{v}_{\mathrm{r}} \sin 60=1000 * 10 * 10^{-4} *(30-15) *(30-15) \sin 60=194.856 \mathrm{~N}$ $\mathrm{R}=\sqrt{ } \mathrm{Fx}^{2}+\mathrm{Fy}^{2}=389.71 \mathrm{~N}$ $\theta=\tan ^{-1}(\mathrm{Fy} / \mathrm{Fx})=30^{\circ}$
c) $\mathrm{Fx}=\rho \mathrm{Q} \mathrm{v}_{\mathrm{r}}(1+\cos 60)=1000 * 10 * 10^{-4} * 30 *(30-15)(\cos 60+1)=675 \mathrm{~N}$ Output power $=\mathrm{Fx} * \mathrm{u}=675 * 15=10125$ watt Input power $=\gamma \mathrm{QH}=\gamma \mathrm{Q} \mathrm{v}^{2} / 2 \mathrm{~g}=9810 * 10 * 10^{-4} * 30 *(30)^{2} / 2 \mathrm{~g}=13500$ watt $\eta=$ Output power / input power $=75 \%$

Problem 4-4:

A nozzle 3 cm diameter that has a coefficient of velocity of 0.97 is fitted at the end of a pipeline 10 cm diameter. Find the force exerted by the nozzle on the pipeline if the pressure at the end of the pipeline is $0.5 \mathrm{~kg} / \mathrm{cm}^{2}$

Solution

$$
\mathrm{P} 1=0.5 \mathrm{~kg} / \mathrm{cm}^{2}=0.5 * 10^{4} \mathrm{~kg} / \mathrm{m}^{2}
$$

Apply B.E bet. 1 \& 2

$$
\begin{aligned}
& \mathrm{Z}_{1}+\mathrm{v}_{1}{ }^{2} / 2 \mathrm{~g}+\mathrm{P}_{1} / \gamma=\mathrm{Z}_{2}+\mathrm{v}_{2}{ }^{2} / 2 \mathrm{~g}+\mathrm{P}_{2} / \gamma \\
& 0+\mathrm{Q}^{2} / 2 \mathrm{~g} \mathrm{~A}_{1}^{2}+0.5 * 10^{4} / 1000=0+0+\mathrm{Q}^{2} / 2 \mathrm{~g} \mathrm{~A}_{2}{ }^{2} \\
& \mathrm{Q}_{\mathrm{th}}=0.007 \mathrm{~m}^{3} / \mathrm{sec}
\end{aligned}
$$

$$
\mathrm{Q}_{\mathrm{act}}=\mathrm{Cd} \mathrm{Q}_{\mathrm{th}}=\mathrm{Cv} * \mathrm{Cc}^{*} \mathrm{Q}_{\mathrm{th}}=
$$

$$
=0.97 * 1 * 0.007=0.00682 \mathrm{~m} / \mathrm{sec} \quad(\mathrm{Cc}=1 \text { for nozzle })
$$

$$
\mathrm{v}_{\text {lact }}=\mathrm{Q}_{\text {act }} / \mathrm{A}_{1}=0.8682 \mathrm{~m} / \mathrm{sec}
$$

$$
\mathrm{v}_{2}=\mathrm{Q}_{\mathrm{act}} / \mathrm{A}_{2}=9.646 \mathrm{~m} / \mathrm{sec}
$$

Apply the momentum Eqn. In X-direction
$P_{1} A_{1}-R=\rho Q v_{2}-\rho Q v_{1}=\rho Q\left(v_{2}-v_{1}\right)$
$0.5 * 10^{4} * 9.81 * \pi / 4(0.1)^{2}-\mathrm{R}=1000 * 0.00682 *(9.646-0.8682)$
$\mathrm{R}=325.37 \mathrm{~N} \quad$ Force exerted on water

Problem 4-5:

Water flows at a rate of $100 \mathrm{lit} / \mathrm{sec}$ in a 30 cm diameter horizontal pipe connected to a 20 cm diameter pipe through a vertical reducer bend where the change in water direction is 120°. The vertical distance between the entrance and outlet of the bend is 1.5 m and the pressure at its entrance is $0.7 \mathrm{~kg} / \mathrm{cm}^{2}$. The total weight of the bend material and water contained in it is 100 kg . Calculate the horizontal and vertical components of the force required to hold the bend in place.

Solution

$\mathrm{Q}=\mathrm{A}_{1} \mathrm{~V}_{1}=\mathrm{A}_{2} \mathrm{~V}_{2}$
$\mathrm{V}_{1}=\mathrm{Q} / \mathrm{A}_{1}=1.415 \mathrm{~m} / \mathrm{sec}$
$\mathrm{v}_{2}=\mathrm{Q} / \mathrm{A}_{2}=3.183 \mathrm{~m} / \mathrm{sec}$

Apply B.E bet. 1 \& 2

$\mathrm{Z}_{1}+\mathrm{v}_{1}{ }^{2} / 2 \mathrm{~g}+\mathrm{P}_{1} / \gamma=\mathrm{Z}_{2}+\mathrm{v}_{2}{ }^{2} / 2 \mathrm{~g}+\mathrm{P}_{2} / \gamma$
$0+(1.415)^{2} / 2 \mathrm{~g}+0.7 * 10^{4} / 1000=1.5+(3.183)^{2} / 2 \mathrm{~g}+\mathrm{P}_{2} / \gamma$
$\mathrm{P}_{2}=49890.37 \mathrm{~N} / \mathrm{m}^{2}$
Apply the momentum Eqn. In X-direction
$P_{1} A_{1}+P_{2} A_{2} \cos 60-F x=-\rho Q v_{2} \cos 60-\rho Q v_{1}=-\rho Q\left(v_{2} \cos 60+v_{1}\right)$
$0.7 * 10^{4} * 9.81 * \pi / 4(0.3)^{2}+49890.37 * \pi / 4(0.2)^{2} * 0.5-\mathrm{Fx}$

$$
=-1000 * 0.1(3.183 * 0.5+1.415)
$$

$\mathrm{Fx}=5938.32 \mathrm{~N} \quad$ Force exerted on water
Apply the momentum Eqn. In Y-direction
Fy -W - $\mathrm{P}_{2} \mathrm{~A}_{2} \sin 60=\rho \mathrm{Q} \mathrm{v}_{2} \sin 60-0$
$\mathrm{Fy}-100 * 9.81 * 94890.37 * \pi / 4(0.2)^{2} \sin 60=1000 * 0.1(3.183 \sin 60)$
Fy $=2614.02 \mathrm{~N} \quad$ Force exerted on water

Force exerted on the bend
$\mathrm{Fx}=5938.32 \mathrm{~N}$
Fy $=2614.02 \mathrm{~N}$
Force required to hold the bend in position.
$\mathrm{Fx}=5938.32 \mathrm{~N}$
$F y=2614.02 \mathrm{~N}$

Problem 4-6: Water flows through a Y-shaped horizontal pipe connection. The velocity in the stem is $3 \mathrm{~m} / \mathrm{sec}$ and the diameter is 30 cm . Each branch is of 15 cm diameter and inclined at an angle 30° to the stem. If the pressure in the stem is $2 \mathrm{~kg} / \mathrm{cm}^{2}$, calculate the magnitude and direction of the force of water on the Y-shaped pipe connection if the flow rates in both branches are the same.

Solution

$$
\begin{aligned}
& \mathrm{P}_{1}=2 \mathrm{~kg} / \mathrm{cm}^{2} \\
& \mathrm{v}_{1}=3 \mathrm{~m} / \mathrm{sec}
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{Q}=\mathrm{A}_{1} \mathrm{v}_{1}=\pi / 4(0.3)^{2} * 3=0.212 \mathrm{~m}^{3} / \mathrm{sec} \\
& \mathrm{v}_{2}=\mathrm{Q} / \mathrm{A}_{2}=6 \mathrm{~m} / \mathrm{sec}
\end{aligned}
$$

Apply B.E bet. 1 \& 2

$$
\begin{aligned}
& \mathrm{Z}_{1}+\mathrm{v}_{1}^{2} / 2 \mathrm{~g}+\mathrm{P}_{1} / \gamma=\mathrm{Z}_{2}+\mathrm{v}_{2}^{2} / 2 \mathrm{~g}+\mathrm{P}_{2} / \gamma \\
& 0+(3)^{2} / 2 \mathrm{~g}+2 * 10^{4} / 1000=0+(6)^{2} / 2 \mathrm{~g}+\mathrm{P}_{2} / \gamma \\
& \mathrm{P}_{2}=18623.853 \mathrm{~kg} / \mathrm{m}^{2}
\end{aligned}
$$

Apply the momentum Eqn. In X-direction
$P_{1} A_{1}-2 * P_{2} A_{2} \cos 30-F x=2 * \rho Q / 2 v_{2} \cos 30-\rho Q v_{1}$
$2 * 10^{4} * 9.81 * \pi / 4(0.3)^{2}-2 * 18623.853 * 9.81 * \pi / 4(0.15)^{2} * \cos 30-\mathrm{Fx}$ $=1000 * 0.212(6 \cos 60-3)$
$\mathrm{Fx}=7810.92 \mathrm{~N} \quad$ Force exerted on water
Apply the momentum Eqn. In Y-direction
Fy $-\mathrm{P}_{2} \mathrm{~A}_{2} \sin 30+\mathrm{P}_{2} \mathrm{~A}_{2} \sin 30=\rho \mathrm{Q} / 2\left(\mathrm{v}_{2} \sin 30-\mathrm{v}_{2} \sin 30\right)$
Fy $=0$
Force exerted on the $\mathrm{Y}-$ shaped connection $=7810.92 \mathrm{~N}$

Problem 4-7:

A 45° horizontal reducer elbow has 15 cm diameter at the upstream end and 10 cm at the other end and is connected at the end of a pipeline. Neglecting any losses in the elbow, determine the magnitude and direction of the force affecting the pipeline when a discharge of $75 \mathrm{lit} / \mathrm{sec}$ of water is flowing through the elbow into the atmosphere.

Solution

$$
\begin{aligned}
& \mathrm{Q}=75 \mathrm{lit} / \mathrm{sec}=0.075 \mathrm{~m}^{3} / \mathrm{sec} \\
& \mathrm{Q}=\mathrm{A}_{1} \mathrm{v}_{1}=\mathrm{A}_{2} \mathrm{v}_{2} \\
& \mathrm{~V}_{1}=\mathrm{Q} / \mathrm{A}_{1}=4.244 \mathrm{~m} / \mathrm{sec} \\
& \mathrm{v}_{2}=\mathrm{Q} / \mathrm{A}_{2}=9.55 \mathrm{~m} / \mathrm{sec}
\end{aligned}
$$

Apply B.E bet. 1 \& 2

$$
\begin{aligned}
& \mathrm{Z}_{1}+\mathrm{v}_{1}^{2} / 2 \mathrm{~g}+\mathrm{P}_{1} / \gamma=\mathrm{Z}_{2}+\mathrm{v}_{2}^{2} / 2 \mathrm{~g}+\mathrm{P}_{2} / \gamma \\
& 0+(4.244)^{2} / 2 \mathrm{~g}+\mathrm{P}_{1} / \gamma=0+(9.55)^{2} / 2 \mathrm{~g}+0 \\
& \mathrm{P}_{1}=36588.21 \mathrm{~N} / \mathrm{m}^{2}
\end{aligned}
$$

Apply the momentum Eqn. In X-direction

$$
\begin{aligned}
& P_{1} A_{1}-F x=-\rho Q v_{2} \cos 45-\rho Q v_{1}=-\rho Q\left(v_{2} \cos 45-v_{1}\right) \\
& 36588.21 * \pi / 4(0.15)^{2}-F x=-1000 * 0.06(9.55 \cos 45-4.244) \\
& F x=496.073 N \quad \text { Force exerted on water }
\end{aligned}
$$

Apply the momentum Eqn. In Y-direction

$F y=\rho Q v_{2} \sin 45$
$F y=1000 * 0.075 *(9.55 \sin 45)$
Fy $=506.43 \mathrm{~N} \quad$ Force exerted on water
Force exerted on the elbow
$\mathrm{Fx}=496.073 \mathrm{~N}$
Fy $=506.43 \mathrm{~N}$
$R=\sqrt{F x^{2}}+F^{2}=708.913 N$
$\theta=\tan ^{-1}(\mathrm{Fy} / \mathrm{Fx})=45.6^{\circ}$
$\mathrm{R}=$ the force exerted by elbow on the pipeline.

Best regards,
Dr. Amir Mobasher

ASSIGNMENTS

ASSIGNMENT 1

FLOW THROUGH PIPES

Q1: Determine the type of flow in a 400 mm diameter pipe when
a) Water flows at average velocity of $1.2 \mathrm{~m} / \mathrm{sec}$ and $v=1.13 \times 10^{-6}$ $\mathrm{m}^{2} / \mathrm{sec}$.
b) Glycerin flows at a rate of $2.0 \mathrm{lit} / \mathrm{min}$ having $\rho=1260 \mathrm{~kg} / \mathrm{m}^{3}$ and

$$
\mu=0.9 \mathrm{~N} . \mathrm{s} / \mathrm{m}^{2} .
$$

Q2: The losses in the shown figure equals $3\left(\mathrm{~V}^{2} / 2 \mathrm{~g}\right) \mathrm{ft}$, when H is 20 ft . What is the discharge passing in the pipe? Draw the TEL and the HGL.

Q3: Find the discharge through pipe and the pressure at point " C ".

Q4: A syphon filled with oil of specific gravity 0.9 discharges 300 lit/s to the atmosphere at an elevation of 4.0 m below oil level. The syphon is 0.2 m in diameter and its invert is 5.0 m above oil level. Find the losses in the syphon in terms of the velocity head. Find the pressure at the invert if two thirds of the losses occur in the first leg.

Q5: Find difference in the level "H" between point "a" and "b" for the shown figure.

Q6: Find the discharge through pipe for the shown figure.

Q7: Two reservoirs are connected by 3 pipes in series as shown in figure.
The velocity of water in the first pipe is $5.73 \mathrm{~m} / \mathrm{s}$. considering minor losses, calculate the difference in levels of the water in the two reservoirs. Sketch the T.E.L and the H.G.L. showing all vertical dimensions. $\mathrm{Kc}=0.5$.

Q8: Two pipes are connected in parallel to each other between two reservoirs with length $\mathrm{L} 1=2400 \mathrm{~m}, \mathrm{D} 1=1.20 \mathrm{~m}, \mathrm{~F} 1=0.024$; $\mathrm{L} 2=2400 \mathrm{~m}$, $\mathrm{D} 2=1.0 \mathrm{~m}$, and $\mathrm{F} 2=0.02$. Find the total flow, if the difference in elevation is 25 m .

Q9: Reservoir A is connected to reservoir B through a pipeline having a length 64 km . The elevation of reservoir A is 180 m higher than that of reservoir B . The pipeline was designed to convey a flow rate of $28,000 \mathrm{~m}^{3} /$ day. It was decided to raise the flow rate from reservoir A to reservoir B by laying an identical pipe connected in parallel to the original pipe for a length of 32 km . Find the new flow rate from reservoir A to reservoir B . $(\mathrm{F}=0.016$ for all pipes).

Q10: The discharge in the network shown is increased from $250 \mathrm{lit} / \mathrm{s}$ to 350 lit/s by adding a new branch pipe BC of length 800 m . calculate the diameter of BC such that the head loss from A to D remains constant.

Q11: A reservoir A with its surface at elevation 100 ft above datum supplies water to 2 other reservoirs B and C of surface levels of 25 ft and zero ft respectively above datum. From A to junction J, common pip of 6 inch diameter, 800 ft long is used, the junction being at a level 20 ft above datum. The branch JB is 4 inch diameter, 200 ft long and the branch JC is 5 inch diameter, 300 ft long. Calculate the discharge to B and C . Take F for all pipes is taken 0.0075 .

Best regards,
Dr. Amir Mobasher

ASSIGNMENT 2

PIPE NETWORKS

Q1: A pipe network is shown in figure in which Q and h_{f} refers to discharges and pressure head loss respectively. Subscripts $1,2,3,4$ and 5 designate respective values in pipe lengths AC, BC, CD, DA, and AC. Subscripts A, B, C, and D designate discharges entering or leaving the junction points $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and D respectively.

Q2: Determine the flow in each of the cast iron pipes in the shown network using the Hardy Cross method. Take $n=2.0$

Q3: Using two steps of hardy-cross method, estimate the flow rate in each of the pipes in the network shown in figure. Assume $\mathrm{F}=0.02$ for all pipes.

Pipe	AF	FB	BC	CE	EA	AD	DE	EB
Diam. (mm)	300	300	300	300	300	300	300	300
Length (m)	400	400	600	500	500	600	500	500

Best regards,
Dr. Amir Mobasher

ASSIGNMENT 3

PUMPS \& TURBINES

Q1: A Pump has a cavitation constant $=0.25$, this pump was instructed on well using pipe of 20 m length and 300 mm diameter, there are elbow $\left(\mathrm{k}_{\mathrm{e}}=1\right)$ and valve $\left(\mathrm{k}_{\mathrm{e}}=5\right)$ in the system. The flow is $40 \mathrm{~m}^{3}$ and the total Dynamic Head $\mathrm{H}_{\mathrm{t}}=30 \mathrm{~m}$ (from pump curve) $\mathrm{f}=0.02$
Calculate the maximum suction head

Q2: A centrifugal pump running at 1200 rpm gave the following relation between head and discharge:

Discharge $\left(\mathrm{m}^{3} / \mathrm{min}\right)$	0	4.5	9.0	13.5	18.0	22.5
Head (m)	22.5	22.2	21.6	19.5	14.1	0

The pump is connected to a 400 mm suction and delivery pipe the total length of which is 80 m and the discharge to atmosphere is 20 m above sump level. The entrance loss is equivalent to an additional 8 m of pipe and f is assumed as 0.02 . Calculate the discharge in m^{3} per minute.

Q3: A centrifugal pump is used to deliver water against a static lift of 12 m . The head loss due to friction $=150000 \mathrm{Q}^{2}$, head loss is in m and the flow is in Q in $\mathrm{m}^{3} / \mathrm{s}$. The pump characteristic is given in the following table. Deduce operating head and flow.

$\mathbf{H}(\mathbf{m})$	30	27	24	18	12	6
$\mathbf{Q}(\mathbf{L} / \mathbf{s})$	0	6.9	11.4	15.8	18.9	21.5
$\boldsymbol{\eta}$	0	60	70	65	40	20

- Sketch the pump's characteristic curves for the case of two pumps connected in parallel
- Sketch the pump's characteristic curves for the case of two pumps connected in series

Q4: Water flows from an upper reservoir to a lower one while passing through a turbine, as shown in Fig. Find the power generated by the turbine. Neglect minor losses. The efficiency of the turbine-generator is 85 percent

Best regards,
Dr. Amir Mobasher

ASSIGNMENT 4

MOMENTUM PRINCIPLE

Q1: The force exerted by a 25 mm diameter jet against a flat plate normal to the axis of the jet is 650 N . What is the flow in $\mathrm{m}^{3} / \mathrm{s}$?

Q2: A water jet 50 mm diameter strikes a 1.20 m plate which is at an angle of 30° with the stream's direction. If the force applied at the edge of the plate, to maintain equilibrium, is 161 N , calculate the rate of flow. Neglect the weight of the plate.

Q3: A square plate of uniform thickness and length of side 30 cm hangs vertically from hinges at its top edge. When a horizontal jet strikes the plate at its center, the plate is deflected and comes to rest at an angle of 30° to the vertical. The jet is 25 mm diameter and has a velocity of $6 \mathrm{~m} / \mathrm{s}$.
Calculate the mass of the plate and give the distance along the plate, from the hinge, of the point at which the jet strikes the plate in its deflected position.

Q4: A jet of water 75 mm in diameter with a velocity of $12 \mathrm{~m} / \mathrm{sec}$ meets a vane having a velocity of $4.8 \mathrm{~m} / \mathrm{sec}$ in the direction of the jet. If water meets the vane tangentially and the deflection angle is 120°, find the force of water exerted on the vane.

Q5: A liquid jet is issuing upward against a flat board of weight 1 Ib and supporting it as indicated in the figure. Determine the equilibrium height of the board above the nozzle exit, if the discharge is $1.5 \mathrm{lit} / \mathrm{s}$ and the nozzle diameter is 2 cm .

Q6: Find the force exerted on each bolt, when the water is flowing at rate of 0.25 $\mathrm{m}^{3} / \mathrm{s}$. The diameters of the pipe and the nozzle are 0.30 m and 0.10 m . respectively.

Q7: A horizontal jet of water $2 \times 10^{3} \mathrm{~mm}^{2}$ cross-section and flowing at a velocity of $15 \mathrm{~m} / \mathrm{s}$ hits a flat plate at 60° to the axis (of the jet) and to the horizontal. The jet is such that there is no side spread. If the plate is stationary, calculate a) the force exerted on the plate in the direction of the jet and b) the ratio between the quantity of fluid that is deflected upwards and that downwards. (Assume that there is no friction and therefore no shear force).

Q8: The outlet pipe from a pump is a bend of 45 rising in the vertical plane (i.e. and internal angle of 135). The bend is 150 mm diameter at its inlet and 300 mm diameter at its outlet. The pipe axis at the inlet is horizontal and at the outlet it is 1 m higher. By neglecting friction, calculate the force and its direction if the inlet pressure is $100 \mathrm{KN} / \mathrm{m}^{2}$ and the flow of water through the pipe is $0.3 \mathrm{~m}^{3} / \mathrm{s}$. The volume of the pipe is $0.075 \mathrm{~m}^{3}$.

Q9: A conveying elbow turns water through an angle of 120° in a vertical plane. The flow cross-sectional diameter is 400 mm at the elbow inlet, section 1, and 200 mm at the elbow outlet, section 2. The elbow flow passage volume is $0.20 \mathrm{~m}^{3}$ between sections $1 \& 2$. The water flow rate is $0.40 \mathrm{~m}^{3} / \mathrm{s}$ and the elbow inlet and outlet pressures are 150 KPa and 90 KPa , respectively. Determine the magnitude and direction of the horizontal and vertical components of reaction force exerted by the water on the elbow.

