(CT 231) Highway \& Airport Engineering
Spring (2019)
Assignment No. (2)
Horizontal \& Vertical Alignment

Question 1

a) What are the different types of horizontal and vertical curves?
b) Explain using a neat sketch the main elements of spiral curves.
c) Derive an equation showing how to design horizontal curve super elevation to resist Centrifugal force

Question (2)

A building is located 6 m from the centerline of the inside lane of a curved section of highway whose radius is 125 m . The road is level and $\mathrm{e}=0.10$. Determine the posted Speed limit (to the nearest $10 \mathrm{~km} / \mathrm{h}$) considering the Sight Distance and curve radius.

Question (3)

A right turn horizontal curve on a two-lane highway has a lane width of 3.60 m , shoulder width of 2.5 m , super elevation of 4%, crown slope of 2%, shoulder 5%, design speed of 90 km / h, T.S. elevation of 23.75 m, T.S. station of $10+000$, and longitudinal grade of $+2.5 \%$.
a) Determine the minimum radius of the curve to satisfy good vehicle stability.
b) If the curve will be constructed with the minimum radius calculated above, draw the progress of the super elevation development from the normal crown section to the fully super elevated section if rotation is achieved around center line.

Question (4)

A vertical curve connects a $+2.4 \%$ grade with -2.8% grade on a two-lane highway. If the criterion selected for design is the minimum stopping sight distance, and the design speed of the highway is $90 \mathrm{~km} / \mathrm{h}$, compute and display in a tabular form the elevation of the curve at $50-\mathrm{m}$ intervals if the grades intersect at station $(22+000)$ at an elevation of 200 m . In the same table, show the station and elevation of BVC, EVC, and the highest point.

Question (5)

A sag vertical curve connects a -2 percent grade with $a+2.5$ percent grade on a rural arterial highway. If the criterion selected for design is the minimum stopping sight distance, and the design speed of the highway is 70 mph , compute the elevation of the curve at $100-\mathrm{ft}$ stations if the grades intersect at the station $(475+000)$ at an elevation of 300 ft . Also determine the elevation and station of the lowest point.

Question (6)

A vertical curve connects a (+g1) \% grade with a (-g2) \% grade on a two-lane highway. If the criterion selected for design is the minimum stopping sight distance, and the length of this curve is 300 m , the difference in elevation between the highest point and the beginning of curve is 1.35 m , stopping sight distance is 200 m .
Determine the grades and safe speed of the vertical curve.

Question (7)

A two-lane highway (two 3.6 m lanes) has a posted speed limit of $80 \mathrm{~km} / \mathrm{h}$ and, on one section, has both horizontal and vertical curves as shown in the figure. A number of accidents have been observed on the section as follows:

- Type I accidents: vehicles skidding off the horizontal curve.
- Type II accidents: vehicles hitting a stationary object at day time.
- Type III accidents: vehicles hitting a stationary object at night time.

You are asked to analyze the section to check if the $80 \mathrm{~km} / \mathrm{hr}$ posted speed limit is an unsafe speed for the curves in question and a major cause of any of the two accident types. (Assume coefficient of longitudinal friction $=0.30$, coefficient of side friction $=$ 0.14 , the perception-reaction time $=2.5 \mathrm{sec}$, and highway grade for SSD is the average of G1 and G2).

Plan view (vertical alignment)

Civil Engineering Department Dr. Mohamed Reda

Spring (2019)
Assignment No. (2)
Horizontal \& Vertical Alignment TECHNOLOGICAL
INSTITUTE

Exhibit 3-14. Mimimam Radins for Desigu of Rural Highways, Urban Frownays, and

Higher Technological Institute Civil Engineering Department
Dr. Mohamed Reda
(CT 231) Highway \& Airport Engineering
Spring (2019)
Assignment No. (2)
Horizontal \& Vertical Alignment

Metric			US Customary		
$\begin{gathered} \text { Design speed } \\ (\mathrm{km} / \mathrm{h}) \end{gathered}$	Maximum relative gradient (\%)	Equivalent maximum relative slope	$\begin{gathered} \text { Design speed } \\ \text { (moh) } \end{gathered}$	Maximum relative gradient (\%)	Equivalent maximum relative slope
20	0.80	1:125	15	0.78	1:128
30	0.75	1:133	20	0.74	1:135
40	0.70	1:143	25	0.70	1:143
50	0.65	1.150	30	0.66	1:152
60	0.60	1:167	35	0.62	1:161
70	0.55	1:182	40	0.58	1:172
80	0.50	1200	45	0.54	1:185
90	0.47	1213	50	0.50	1:200
100	0.44	1227	55	0.47	1213
110	0.41	1244	60	0.45	1:222
120	0.38	1263	65	0.43	1:233
130	0.35	$1: 286$	70	0.40	1:250
			75	0.38	1:263
			80	0.35	1:286

Exhibit 3-27. Maximum Relative Gradients

Metric				US Customary			
Design speed (km/h)	Stopping sight distance (m)	Rate of vertical curvature, K^{3}		Design speed (mph)	Stopping sight distance (ft)	Rate of vertical curvature, K^{3}	
		Calculated	Design			Calculated	Design
20	20	0.6	1	15	80	3.0	3
30	35	1.9	2	20	115	6.1	7
40	50	3.8	4	25	155	11.1	12
50	65	6.4	7	30	200	18.5	19
60	85	11.0	11	35	250	29.0	29
70	105	16.8	17	40	305	43.1	44
80	130	25.7	26	45	360	60.1	61
90	160	38.9	39	50	425	83.7	84
100	185	52.0	52	55	495	113.5	114
110	220	73.6	74	60	570	150.6	151
120	250	95.0	95	65	645	192.8	193
130	285	123.4	124	70	730	246.9	247
				75	820	311.6	312
				80	910	383.7	384

Rate of vertical curvature, K , is the length of curve per percent algebraic difference in intersecting grades (A). $\mathrm{K}=\mathrm{L} / \mathrm{A}$

Exhibit 3-76. Design Controls for Stopping Sight Distance and for Crest and Sag Vertical Curves

Metric				US Customary			
Design speed (km/h)	Stopping sight distance (m)	Rate of vertical curvature, K^{3}		Design speed (mph)	Stopping sight distance (ft)	Rate of vertical curvature, $\mathrm{K}^{\text {a }}$	
		Calculated	Design			Calculated	Design
20	20	2.1	3	15	80	9.4	10
30	35	5.1	6	20	115	16.5	17
40	50	8.5	9	25	155	25.5	26
50	65	12.2	13	30	200	36.4	37
60	85	17.3	18	35	250	49.0	49
70	105	22.6	23	40	305	63.4	64
80	130	29.4	30	45	360	78.1	79
90	160	37.6	38	50	425	95.7	96
100	185	44.6	45	55	495	114.9	115
110	220	54.4	55	60	570	135.7	136
120	250	62.8	63	65	645	156.5	157
130	285	72.7	73	70	730	180.3	181
				75	820	205.6	206
				80	910	231.0	231
Rate of vertical curvature, K , is the length of curve (m) per percent algebraic difference intersecting grades (A). K = L/A							

Exhibit 3-79. Design Controls for Sag Vertical Curves

Desirable Spiral Parameter (Metric)

Design speed $(\mathbf{k m} / \mathrm{h})$	Spiral parameter (m)
40	50
50	75
60	100
70	125
80	150
90	175
100	200
110	275
120	350
130	425
140	500

