HIGHER TECHNOLOGICAL INSTITUTE

Department of Civil Engineering
Irrigation Works Design 2
Code : CT 265

Assignment 1 Introduction and Hydraulic Design of Weirs

1- Classify the main hydraulic structures based on their functions.
2- Define the Heading-up structures and their influences upstream and downstream the structure.
3- Mention the different types of weirs and their functions.
4- Derive formulas for the statical design of a weir including the uplift pressure and without it.

5- Calculate the distance between two stepped weirs to minimize the water slope in a canal from $50 \mathrm{c} / \mathrm{k}$ to $20 \mathrm{c} / \mathrm{k}$. Explain your answer with a neat sketch.

6- A Nasbah is to be constructed to distribute irrigation water through three branches. The discharge of the main canal $\left(\mathrm{Q}_{\mathrm{T}}\right)$ is $24.30 \mathrm{~m}^{3} / \mathrm{s}$, while $\mathrm{Q} 1: \mathrm{Q} 2: \mathrm{Q} 3=1: 2: 1.5$. Clear overfall weirs are constructed at the beginnings of each branch. The crest level of all weirs is (10.00). If the width of the first weir $\mathrm{B} 1=3 \mathrm{~m}$, determine the widths of the other weirs and the water level in the main canal. Assuming that the weirs equation is $\mathrm{Q}=1.8 \mathrm{~B} \mathrm{H}^{1.5}$.

7- Design and draw complete views of a weir using the following data:

- Canal side slope 1:1
- Water slope $=12 \mathrm{c} / \mathrm{k}$
- $\mathrm{C}_{\mathrm{B}} / \mathrm{C}_{\mathrm{L}}=15 / 7$
- $\mathrm{Q}=2 \mathrm{BH}^{1.5}$ or $1.87 \mathrm{BH}^{1.5}$
- Bed level $=(3.90)$ and bed width $=4 \mathrm{~m}$
- U.S.H.W.L/D.S.H.W.L $=(6.30) /(5.90)$
- U.S.L.W.L/D.S.L.W.L $=(5.90) /(5.50)$
- Bank or road level and width $=(8.80)$ and 4 m

8- A standing wave weir is proposed to be constructed D.S. the head regulator of a canal for the purpose of reducing head and discharge measurements. Design the weir and its floor using both Bligh and Lane methods and find L.W.L U.S/D.S weir given the following data:

- Area served by canal $=32400$ fed.
- Water duty $(\mathrm{max} / \mathrm{min})=50 / 30 \mathrm{~m}^{3} / \mathrm{fed} . /$ day
- Bed width of canal $=10 \mathrm{~m}$
- Side slopes $=1: 1$
- H.W.L U.S/D.S weir $=(11.00) /(10.70)$
- H.W.L submergence ratio $=0.75$
- L.W.L submergence ratio $=0.60$
- Bed level U.S/D.S weir $=(8.50) /(8.20)$
- C_{B} / C_{L} for fine silt $=18 / 8.5$
- Land level at site = (11.10)
- Discharge equation of weir: $\mathrm{Q}=2.03 \mathrm{~B} \mathrm{H}^{1.5} \mathrm{~m}^{3} / \mathrm{s}$

Draw a plan H.E.R and a section elevation to your design with a scale 1:200.
9- A clear overfall weir is going to be built on a lined branch canal running in a sandy soil at a drop of 1 m in land levels according to the following data:

- Area served by canal $=21600$ fed.
- Water duty $=60 \mathrm{~m}^{3} / \mathrm{fed}$./day
- Water level downstream weir is (10.00)
- Water slope $=8 \mathrm{c} / \mathrm{k}$
- Weir's equation: $\mathrm{Q}=1.875 \mathrm{BH}^{1.5} \mathrm{~m}^{3} / \mathrm{s}$
- A foot-path is required.
- $\mathrm{C}_{\mathrm{B}} / \mathrm{C}_{\mathrm{L}}=12 / 5$

It is required to:
1- Design the cross section of the canal.
2- If the average velocity $=0.6 \mathrm{~m} / \mathrm{s}$ and the bed width $=3.5$ water depth, find the water slope.
3- Design the weir with its floor.
4- Draw a plan H.E.R., a section elevation and 2 side views.

