Specific Energy

Nol: n: tion

It is the energy referred to channel bed
as a Datum.
$$E = Constant at any point along the channel
$$\frac{34}{100}$$$$

For any E except Emin there are 2 depths One is <u>subcritical</u> and the other is <u>Supercritical</u>

Minimum Specific Energy (Emin) $E = Y + \frac{Q^2}{29A^2}$ for E_{\min} $\frac{dE}{dy} = 0$

Rectangular Section Q = Pb, $A_c = bY_{cr}$ $\frac{q^2b^2}{q} = \frac{b^3y^3}{b}$ $y_{cr}^{3} = \frac{q^{2}}{q}$

Rec - Section only

$$E_{min} = Y_{cr} + \frac{1}{2}Y_{cr}$$

$$E_{min} = \frac{3}{2} Y_{cr}$$

$$\frac{1}{2}Dcr = \frac{V_{cr}^{2}}{V_{cr}^{2}} \Rightarrow V_{cr}^{2} = 9D_{cr}$$

$$V_{cr} = \sqrt{9} Y_{cr}$$

 $\|f_{N}\| = \sqrt{\frac{9}{9}}$ Rec - Section only $F_{N} = \frac{V}{\sqrt{9y}}$

[F>1 supercritical, [F<1 subcritical, [F=1 critical

1f 6>104

-~0 . ~ 0 channel Deep 6+24 = 01 V

 $\frac{b}{y} \simeq 0$

Λ

$$M = \sqrt{\frac{Q^2}{9}} = \sqrt{\frac{Ac}{T}} = Section factor (M curve)$$

$$S_c = \frac{9n^2}{y_c^{1/3}}$$
 Very wide rectangular channel

35

.

1 max

Sheet (2) – Specific Energy & Applications

- **<u>Q1</u>**: Define each of the following:
 - a) Specific energy
 - b) Alternate depths
- **<u>Q2:</u>** Develop an expression for each of the following:
 - a) Critical depth
 - b) Critical specific energy
 - c) Critical velocity
 - For both (I) rectangular section & (II) any other section
- **Q3:** Calculate the specific energy when 6.25 m^3/s flow in a rectangular channel of 3m wide at a depth of 1m
- **<u>Q4</u>**: Determine the alternate depths for 30 cfs flow in a rectangular channel 6.5 ft wide if the specific energy is 4 ft.
- **Q5:** A 7m wide rectangular channel carries a discharge of 160 m^3/s at a uniform depth of 3.40 m. Manning's coefficient equals 0.022. Determine the channel slope, critical depth, and Froude's number.
- **<u>Q6</u>**: For a discharge of 40 m^3/s , determine the critical depth and critical slope for
 - (a) Trapezoidal channel with bed width 7.5 m and side slope of 1:1.
 - (b) Rectangular channel with bed width 7.5 m.
- **<u>Q7</u>**: Twenty two cubic meters per second flow in a rectangular channel of 6 m width having n of 0.017. Plot accurately the specific energy diagram for depths from 0 to 3 m using the same scale for y and E. Determine from the diagram:
 - (a) The critical depth.
 - (b) The minimum specific Energy.
 - (c) The specific energy when the depth of flow is 2 m.
 - (d) The depths when the specific energy is 2.5 m.
 - (e) The depth which is the alternate depth for 1.5 m depth.
 - (f) What type of flow exists when the depth is: (i) 0.6 m. (ii) 1.8 m.
 - (g) What are the channel slopes necessary to maintain these depths?
 - (h) What types of slopes are these?
 - (k) What is the critical slope assuming the channel to be of great width?
- **<u>Q8</u>**: Flow occurs in rectangular channel of 20 ft width and has a specific energy of 10 ft. Plot accurately the q-curve and determine the following from the curve:
 - a) The critical depth and maximum flow rate.
 - b) The flow rate at a depth of 8 ft.
 - c) The depths at which a flow rate of 1000 cfs may exist
 - d) The flow condition at these depths

2 x 9.81

3	0.96			
4	-0.02			
3.9	0.078			
3.95	0.028			
3.97	0.009			

0.5	2.17
0.2	-4.47
10.3	0.02
0.29	- 0.22
0.31	0.24

(5)
$$Q = 160 \text{ m}^3/\text{s}$$
, $N = 0.022$
 $S = ?$ $Y_c = ?$ $F_n = ?$
 $Q = \frac{1}{n} \left(\frac{A}{P}\right)^{2/3} S^{1/2} A$
 $A = 3.4 (7) = 23.8$

P = 7 + 2(3.4) = 13.8

 $R = \frac{A}{P} = \frac{23.8}{13.8} = 1.72$

 $160 = \frac{1}{1.72} (1.72)^{2/3} 5^{1/2} 23.8$ 0.022

 \Rightarrow \$ = 0.0105

9.81 (3.4) くしし

.

.

*

.

.

.

.

. •

$$40 = 40 \left(\frac{11.84}{11.29}\right) (11.84) S_{c} \implies S_{c} = 0.0067$$

 $A = 1.425 (7.5) = 10.7 m^2$

P = 7.5 + 2(1.425) = 10.35 m

 $40 = 40 \left(\frac{10.7}{10.35}\right)^{2/3} s^{1/2} (10.7) \implies \$ = 0.0083$

 $Q = 22 m^3/s$ N = 0.017

(7)

E	4.68	2.5	1.87	1.68	1.66	1.8	2.17	2.61	3.07
					I				

a) $y_c = 1.11$ b) $E_{min} = 1.66$ c) y = 2m -> E = 2.17d) $E = 2.5 - J_1 = 2.38$, $Y_2 = 0.6$ e) $y_1 = 1.5 \longrightarrow y_2 = 0.85$

f)
$$y = 0.6$$
 (supercritical)
K) $S_{c} = \frac{9h^{2}}{y_{c}^{1/3}} = \frac{9.81(0.017)^{2}}{(1.11)^{1/3}} = 0.0027$
9) at $y = 0.6$ $Q = 22 \text{ m}^{3}/\text{s}$ $n = 0.017$
 $A = 6(0.6) = 3.6$
 $P = 6 + 2(0.6) = 7.2$

$$22 = \frac{1}{0.017} \left(\frac{3.6}{7.2}\right)^{2/3} (3.6) 5^{1/2}$$

$$\Rightarrow 5 = 0.027 > 0.0027 \qquad ((steep slope))$$

at
$$y = 1.8$$

A = 6 (1.8) = 10.

P = 6 + 2(1.8) = 9.6 $22 = \frac{1}{0.017} \left(\frac{10.8}{9.6}\right)^{2/3} 5^{1/2} (10.8)$

 $\$ = 0.001 < \$_c = 0.0027$

((Mild Slope))

d)
$$Q = 1000 \text{ ft}^3/\text{s} \rightarrow y_1 = \underline{9.58 \text{ ft}}$$
, $y_2 = \underline{2.24 \text{ ft}}$
e) $y_1 = \underline{Subcritical}$, $y_2 = \underline{Supercritical}$