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CHAPTER 7
PROPERTIES OF PLANE AREAS

7-1 Introduction

The carrying capacity of a structural member depends on three main
factors; the strength of the material used, the type of loading and the
properties of the member’s cross-section. The first two factors will be
considered in later chapters dealing with stresses, while in the present
chapter the third factor is dealt with,

The- different properties of sections which are likely to be determined
in the problems of structural strength are :

(1) Cross-sectional area.

(2) Position of centre of area or centroid.

(3) Moment of inertia or second moment of area.

(4) Polar moment of inertia.

(5) Radius of gyration.

(6) Product of inertia.

(7) Principal axes of inertia.

It should be remembered that for a particular problem it may not
be necessary to calculate but a few of these Pproperties.

The cross-sectional area, A, needs no description and may be easily
calculated for most structural shapes.

7-2 Centre of area or centroid

This is defined as the point 0 in the plane at which the area may be
assumed to be concentrated to cause the same moment about an axis in
the plane as the distributed area. Thus, referring to Fig. 7.1, the co-or-
dinates of the ceniroid (;, ;;) with respect to the rectangular axes y and
X are given by :

jdi

X = e ilia
A
J
y = 7.1b
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Fig. 7.1

where A is the total area, andjydA and] xdA are the first moments of

area or the statical moments about the x and y axes respectively. These
are commonly denoted by S, and S,. Thus,

S, = f ydA .. 722
S = xdA

= [ .. 72b

It follows from the definition that if an area has an"axis of symmetry, the
centroid lies on it and if, further, it has two or more axes of symmetry, it
is at their point of intersection. This result helps in detecting the centro-
ids of many areas as may be seen from Fig. 7.2.

Fig. 7.2

The centroids of regular areas such as the triangle, the semi-circle,
the parabola, etc. are best found by calculus and the student i1s advised
to memorize them. These are given in Appendix 1.
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In many cases, the cross-sectional area consists of a number of regular
parts and is hence called a compound area. The centroid of a compound
area is found as follows :

(a) Divide the area into a number of regular parts whose centroids
are known.

(b) Determine the area and locate the centroid of each part.

(c) Assuming the area of each part to be acting at its centroid,
take moments about two convenient rectangular axes. The
centroid of the compound area shown in Fig. 7.3 has thus the

co-ordinates x,y where x and y are given by :

21X + ayx, 4 a, %,

x =
A
- 21Y1 T a2y, + a3,
Y=
A
y
ﬁ—xl

Fig. 7.3

7.3 Moment of inertia or second moment of area

As the name may suggest, the second moment or moment of inertia
of an area about an axis is the sum of the products of elemental areas and
the square of the distance of their centroids to that axis.-

Thus, referring to Fig. 7.4, the moment of inertia which is usually
denoted by I may be expressed mathematically as :

e [ y2dA pniedeB



Fig. 7.4

It follows from the definition that the moment of inertia is always
positive and its unit is length to the fourth power; cm* or m.4. The mo-
ments of inertia of the common shapes given in Appendix 1 should

be memorized as they are frequently used.

7.4 Theorem of parallel axes

The moment of inertia about any axis is equal to the moment
of inertia about a parallel axis through the centroid plus the product of
the total area and the square of the distance between the two axes. Re-

ferring to Fig. 7.5, this could be expressed mathematically as :

o

Fig. 7.5

I' =1, + Ad? e T4
In transferring a moment of inertia between two axes, neither of which
is through the centroid, it is necessary first to find the moment of inertia
about the centroidal axis then transfer it to the required axis by using
equation 7.4 twice. It is seen that 1 about a centroidal axis is smaller than

that about any other parallel axis.
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Examples 7.1-7.3 Determine the moments of inertia of the areas
shown in Figs. 7.6, 7.7. and 7.8 about horizontal axes through their

centroids,
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Fig. 7.8

Solution to example 7.1 :

Referring to Fig. 7.6, since the area is symmetrical about the y-axis,
the centroid must lie on it, and it remains to calculate its distance from
a convenient axis such as that at the lower edge of the section to comp-
letely locate the centroid. In order to do so, the area is divided into
triangles and rectangles. For convenience, the computations are given
in a tabulated form as shown in Table 7.1. The areas of individual
parts are tabulated in column (2), the co-ordinates of the centroids
of the elements are tabulated in column (3), and the first moments of
area, Ay, are tabulated in column (4). The centroid of the total area is
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obtained by dividing the sum of the terms in column (4) by the sum of

the terms in column (2). Thus,

y = — = 588 cm.
Y 108 88 cm

The moment of inertia of the total area about the x-axis will be obtained
as the sum of the moments of inertia of the various elements about this
axis; the moment of inertia of each element being given by ecquation
7.4. The terms I and Ad? for all the elements are given in columns (3)
and (6) respectively. The moment of inertia of the entire area about the

x-axis is equal to the sum of all the terms in columns (5) and (6). Thus,

I, = 646 + 1553 = 2195 cm*

A y Ay 1 Ad?
Element
cm?2, cm. cm.? cm?. cm.?
1 48 2 96 64 728
2 4] 30 3 5
3 6 5 30 3 5
4 48 10 480 576 815
Total 108 636 646 1553

Table 7.1

Solution to Examples 7.2 & 7.3 :
The calculations for the other two areas in Figs. 7.7. and 7.8 are

summerized in Tables 7.2 and 7.3 respectively.

A v Ay 1 Ad?
Element
cm. 2 cm. cm.? em.t cm.*
1 375 ) %4 78 1380
2 25 10 250 208 52
3 25 16.25 406 13 1482
Total 87.5 750 299 2947

Table 7.2
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750
y = — =856 cm.
87.5

I, = 299 + 2914 = 3213 cm.4

A y Ay I Ad?
Element
cm. 2 cm. cm.? cm. 4 cm. 4
1 12 0.5 6 1 315
2 96 5 48 51.2 3.7
3 12.6 11 138.6 12.6 364
Total 34.2 192.6 64.8 682.7
Table 7.3
= 192.6
y = = 5.62 cmi

34.2

"I, = 648 + 682.7 = 7.47.5 cm.1

It should be noticed that if the area has more than one axis of symmetry,
the calculations are simpler as the position ef the centroid is known to be
at the point of intersection of these axes. Also, if the moment of inertia
of one of the compound areas about a vertical centroidal axis is required,

calculations may still be conducted in the manner outlined above.
The following example will illustrate these points.

Example 7.4 Find the moments of inertia for the section shown in
Fig. 7.9 about the horizontal and vertical axes through the centroid.

Solution : The centroid is known to be at the point of intersection of
the two axes of symmetry. The momeunt of inertia of the whole area about
the x-axis will be obtained as the sum of the moments of inertia of a rect-
angle about its centroidal axis and the moments of inertia of four triang-

les about an axis through their base. Thus,
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3 % 16’ 1.2 « 82
e 4 g = 1228.8 cm.4

The moment of inertia of the whole area about the y-axis will be
obtained as the sum of the moment of inertia of a ractangle about its cen-
troidal axis and the moments of inertia of two triangles about an axis

parallel to their centroidal axes and at a distance d,

16 x 32 16 x 1.2° 16 x 1.2 x 1.92
yre= i TETpolich 36 " 2

= 106.4 cm.%
It should be noticed that a beam with a cross-section such as that shown

in Fig. 7.9 may be used with the longer dimension either vertical or hori-

zontal, and it will offer more resistance to bending when placed in the

former position. This is because the moment of inertia about the x-axis

is larger than that about the y-axis as indicated by the above calculations.

The student is advised to solve the previous examples independently
and check his results against those given. Further, he can attempt to cal-

culate the moments of inertia about the y-axis.
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7.5 Polar moment of inertia

The moment of inertia of an area about an axis perpendicular to its
plane and through its centroid is called the polar moment of inertia and

is usually denoted by J or I,. It is expressed as :

] = o
X
Fig. 7.10
Referring to Fig. 7.10, r2 = x2 4+ y2 and from equation 7.5.
_]—f(x2+y2)dA—Ix+Iy 576

Equation 7.6 shows that the sum of the moments of inertia about any two
rectangular centroidal axes is constant. It follows that if the moment
of inertia about one of these axes is a maximum, the moment about the
other must be a minimum. The polar moment of inertia of a circular
section is frequently used in problems dealing with torsion of shafts with

circular cross-section (chapter 9). For this section, it is known from sym-

).

metry that [, = I,. Hence from equation 7.5.

y*

’.‘1‘1‘4 ar 4 71'1"4

R e

7.6 Radius of gyration

The radius of gyration of a section is the distance from the inertia axis
that the entire area may be assumed to be concentrated in order to give




i3
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the same moments of inertia. Thus by definition, the radius of gyration
which is usually denoted by i may be expressed as : -

I = Ai? e fed

or 1 = J._I_ e T8
A

It is seen that the point where the area is assumed to be concentrated is
not the same as the centroid. It is also different for each inertia

axis chosen.

i \/ I, . 705
x A
e \/ I, ~_rop
y A

This area property is of particular importance in regard to problems.

dealing with buckling of columns.

7-7 Product of imertia

The product of inertia about two rectangular axes x and y is defined
as the sum of the products of elemental areas and the co-ordinates of their
centroids to the reference axes. Thus, referring to Fig. 7.11, the product
of inertia which is usually denoted by I,, may be expressed mathemati-

cally as :

Iy, = ] xydA 2HET0

Fig. . 7.11
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It is evaluated by methods siruilar to those used in evaluating the
moments of inertia. When both the x and y co-ordinates have similar
signs, either positive or negative, the product of inertia is positive,
but when the two co-ordinates have different signs, it is negative. If the
area is symmetrical with respect to one of the axes as shown in Fig. 7.12,

cach elemental area dA on one-side of the axis of svmmetry will have a

Fig. 7.12

corresponding area on the other side which while having one similar co-
ordinate. the second is of opposite sign. It is obvious therefore that the
sum of the products of inertia of the two elements will be zero, and con-
sequently the product of inertia of the whole area will also be zero. Thus,
it may be stated that when either one of the two centroidal axes is an axis

of symmetry, the product of inertia is zero.

Je = {{] ) L]

Xy

Such twc axes are called principal axes of inertia.

. As in the case of the moments of inertia, it may be shown that if the
product of inertia of an area about two axes through the centroid is

known, it is possible to find the product of inertia about any other set of

parallel axes.

Thus, referring to Fig. 7.13,

L) =L, + Axy e 12
If x and y are the principal axes of the area then from equation 7.11
I,, = 0, and equation 7.12 becomes :

E = Axy e l3




Fig. 7.13
For an area composed of symmetrical elements, the product of inertia of
the entire area is obtained as the sum of the values found by using equa-
tion 7.13 for cach element. The following examples will illustrate this
point.

Example 7.5 Find the product of inertia I, for the Z-section shown
in Fig. 7.14.

 (3)

Fig. 7.14
Solution :

The total area is divided into three rectangular elements (1), (2) and
(3). Rectangle (1) is symmetrical about both x and y axes, hence its pro-
duct of inertia is zero. Rectangles (2) and (3) are symmetrical about axes
through their centroids, therefore their product of inertia may be found
from equation 7.13.

for rectangle (2), [, = (4 x 2) (— 3) (+ 5) = — 120 cm.4
for rectangle (3), I, = (4 x 2) (+ 3) (— 5) = — 120 cm.?
for the whole section, I, = — 120 — 120 = — 240 cm.%

Xy




6cm [
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Fig. 7.15

Example 7.6 Find the product' of inertia about horizontal and
vertical axes through the centroid of the unequal angle shown in Fig. 7.15.

Solution : The total area is divided into two rectangular elements (1)
and (2) as shown. The co-ordinates of the centroid with respect to two

axes x’ and v”’ chosen as the outer edges of the angle are obtained

as follows :
6 x 05 + 4 x 3
S — —= - EchT
10
6 x 3 +4 x 05
Y1 = =92 cmi
10
and the pr()du'ct of inertia is again found from equation 7.13
L, = 6 [— 1} (-5 4i(+ 1.3) (— 1.5} = —15 cm.4

It should be remembered that the two reference axes x'* and y'’ are arbi
trarily chosen. If the reference axes were chosen as x" and y’ through the
centroids of the two rectangles (1) and (2), another shorter solution may
be worked out.

Since rectangle (1) ‘is symmetrical about the y’ axis and rectangle (2)
is symmetrical about the x axis then I.'," = 0. The co-ordinates of the

centroid with respect to these two axes are :

4% 25
%, = ———— = | cm.
10
6“5 25
P = — 3.5~ cm.
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and the product of inertia is readily obtained from equation 7.11.
Ly — 0 =L 110 e L5
I, = — 15 ¢m.4

which is identical t_c; the value obtained before.
7-8 Moments and product of inertia about inclined axes

y |7

Fig. 7.16

The moments of intertia of an area about inclined axes may be
obtained from the properties of the area with respect to the horizontal
and vertical axes,

Referring to Fig. 7.16,

13 _fy'ZdA it dde

’

y = y cos® — x sin® 5

If this value of y' is substituted in equation 7.14, the following value for
I’ is obtained,

i = coszﬁfysz - sinz@fxzdz\ — 2 sin @ cos@fxydA

16
The first and second integrals of equation 7.16 represent the moments of

inertia of the area about the x and y axes respectively. The last integral
represents the product of inertia I,,. Equation 7.16 may thus be written
as :

L=l cp28. =1 sin@ .1 sin28 .. Tlia
Using the trigonometric relation,

r

X' =xcos@®@ L ysin@® SRR
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a similar expression may be derived for the moment of inertia about the
y'-axis.

I’ = I, sin?26 + 1, cos?26 + I, sin 26 ...7.19a
If equations 7.17 and 7.19 are added, the following relationship is obtained.
L bk ticsiTinlad o 0120

This shows that the sum of the moments of inertia about any two cen-
troidal perpendicular axes is constant. It also shows that if one of the

moments of inertia is a maximum, the other must be a minimum.
The product of inertia about the x’ and y’ axes is given by :
L' =fx'y'dA e el

If the values of y’ and x’ given by equation 7.15 and 7.18 are then substi-
tuted in equation 7.21, the following value for L', is obtained.

I',) == sin @ cos B f y2dA — sin © cos @ f x2dA + cos?2 @

fxydA — sin2 6 j xydA

Lo = 41, — L)sin @ cos8 + I (cos?® — sin2)...7.22a
If the relationships

c0s28-— % + % cos 26, sin2 8 = -;-— é cos 28, and sin 28 = 2 5in® cos &

ore substituted in equations 7.17a, 7.19a and 7.22a, the result will by :

I +1 I —
1" = 5 Yy 4+ = Y cos28 — I, sin26 .. 7.17b
] Il + Iy Il == Iy. £
I . = 5 — = cos28 + I, sin2 8 ..7.19b
Favs I‘ = I’ = ;
B = S sin26 4 I,, cos28 .. 7.22b

4.9 Principal axes of inertia i
The principal axes of inertia of a plane area, which are ‘usually
referred to as axes u and v, may be defined as the two perpendicular axes
passing through the centroid of the area such that the moment of inertia
about one is a maximum and about the other 2 minimum, or alternati-

vely, the two axes the product of inertia about which is zero.
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As may be seen from equations 7.17 and 7.19, the moment of inertia
of an area about an inclined axis is a function of the angle &. The angle
@ at which the moment of inertia is a maximum or a minimum is obta-
ined by differentiating equation 7.17 with respect to @ and equating the

derivative to zero. Thus,

dl,
= — 1 sin 268 L I sin 28 — 2¢]  cos 26 = 0
de
— 21,
or, tan 20 — —— e 1223
e

Since there are two angles under 360° which have the same tangent, equ-
equation 7.23 defines two values for the angle 2@ which are at 180°
The two corresponding values of @ will be at 90°. By definition, the two
perpendicular axes defined by equation 7.23 are the principal axes.

By the alternative definition, if @ is to define the principal axes, L) =0.
Thus, from equation 7.22 b,
= .
tan 26 =
1
which is the same result obtained in equation 7.23. The moments of
inertia about the principal axes I, and I, may be obtained by substituting

the values of @ obtained from equation 7.23 into equation 7.17b, Thus,

el I, — I, \2
Iy = ——— + ( - ) + 12, .. 724
2 2

Lowd, I— 1, %2
I, = — ( 0 gl =duos
2 2. 3

where I and I, are the maximum and minimum values of the moments

of inertia respectively,

7.10 Semi-graphical treatment — Mohr’s circle of inertia

The expressions for the moments and products of inertia about inclined
axes given by equations 7.17 and 7.22 are difficult to remember. It
is convenient, therefore, to use a graphical solution which is easy to rem-
ember. A careful study of equations-7.17,and 7.22,shows that they repre-

sent a circle written in a parametric form. That they represent a circle




is made clearer by first re-writing them as :

I + 1 =1
Ty — = —coz 28— 1 sia 20
9 2

b1,
—— sin 20, + L cos 26
2

I,60=

This is done by making use of the trigonometric relationships,
sin2 @ = 1/2 — 1/2 cos 20
cos?2 @ = 1/2 + 1/2 cos 20

Eliminating the parameter @ by squaring and adding,

Ix. =F Iy . Ix 7. IY -
T D
2 2

However, in every problem I,, I, and I,  are constants while I, and I, 9

are the variables. Hence equation 7.26 may be written in a simplified

form,
(g —ea) B tlf g = b R L
el
where a = —— 22728 a
2

=y
= \/(—_> T .. Y1285
2

Fquation 7.27 is the familiar expression known in analytical geometry;
(x—a) 2 +y2=b2of a circle of radius b and centre at(a,0). Hence if a circle
satisfying this equation is plotted, the co-ordinates of a point (%, y) on
this circle correspond to I, and I, g for a particular inclination @ with
respect to the reference axes x and y. The x co-ordinate represents the
1oment of inertia while the y co-ordinate represents the product of inertia.

The circle so constructed is called Mohr’s circle of inertia.

There are several methods of plotting the circle defined by equation
7.26. It may be constructed by locating the centre at (a, 0) and using the
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radius b given by equation 7.28 b, but this is not the best procedure for
the purpose at hand. The moment of inertia and product of inertia about
two centroidal rectangular axes x and y are usually known. These two
values, I, and I, , define one point on the circle. This Knowledge,
together with the fact that the centre of circle is located on the
abscessa at (I, 4 I, )/2 is sufficient to plot the circle. The procedures
are outlined below with reference to Fig. 7.17.

Ix
i v
x(Ic,Ixy) /
NS /
Ixy u o

e
f‘?/ ) s ey
v

_/|U(Iu’0 | \7‘\_2
\ V/y

Fig. 7.17

Ix +1
B

s

[.,,___ Iu

(1) Set up a rectangular co-ordinate system of axes where the hori-
zontal axis is the moment of inertia and the vertical axis is the product of
inertia axis. Directions of positive axes are taken, as usual, to the right
and upward.

(2) Locate the centre of the circle, which is on the horizontai axis

at a distance of (I,+1.) /2 from the origin o

(3) Locate the point x of co-ordinates I, and I, with respect to the

origin; I measured upwards if positive and downwards if negative.
g 2> Xy p pO g

(4) Connect the centre of the circle found in (2) with the point loca-

ted in (3) and determine this distance which is the radius of the circle.

(5) Draw a circle with the radius found in (4). The two points of
intersection with the horizontal axis give the values of the two principal

moments of inertia I, and I,.
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(6) The directions of the u-axis makes an angle 0, found from the
A clockwise rotation of the axis
The

v-gxis is obtained in a similar manner and makes an angle @ with

geometry of the circle, with the x-axis.

to be found corresponds to a clockwise rotation round the circle.

the y-axis.

By following the above procedures in constructing Mohr’s circle of
inertia, the complete problem of determining the magnitude of the prin-
cipal moments of inertia and the directions of the principal axes may be
solved.

Example 7.7 Find the moments of inertia about the principal axes
through the centroid of the area shown in Fig. 7.18. Find also the mom-
ents and products of inertia about axes x, and v, at an angle 159 clock-

wise to x and y axes respectively.

Fig. 7.18

Solution :
The moments and product of inertia about x and y axes are

obtained as follows :

5% 308 (10><53 5
30x53 5108 . y
I, = (5x10) (—7.5) (12.5) + (5x10) (7.5) (-12.5) = — 9360 cm.*
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Mohr’s circle may now be plotted from these three values. The centre
L'+ I,

2
point x has the co-ordinates (I, , I,,) or (27098, — 9360) as shown in Fig.
7.19 a. Therefore,

of the circle has the co-ordinates ( 5 0) or (16936,0), while

Y1 v
\ y
y
N ,/
v — X v
5 f - ]
9360
= =

(277098,-9360) 71 'x

¢
b &
e e

e 27098

Fig. 7.19

Radius = ./ 93602 | 101622 = 13800

9360
26 = 420 4

The principal moments of inertia are equal to the distance from the

origin to the centre of the circle plus or minus its radius.
I, = 16936 + 13800 = 30736 cm.4
I, = 16936 — 13800 — 3136 cm.*

Sinte point u on the circle is anticlockwise from point x, the u-axis is
anticlockwise from the x-axis at an angle,
420 40’
6 = — = 21020
2
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The v-axis is perpendicular to the u-axis through the centroid as shown

in Fig. 7.19b.

The moments and product if inertia about thex, and v, axes are
obtained from the co-ordinates of points x, and y, @n the circle. Since Xy
and y, axes are 15° clockwise from x and y axes, the points x, and y,
on the circle will be 30° clockwise from points x and y respectively. Thus
from the geometry of the circle in Fig. 7.19 b,

Iy, = 16936 + 13800 cos 729 40’ = 21076 cm.4
I, = 16936 — 13800 cos 72°40 = 12796 cm.%
I, = — 13800 sin 720 40’ = — 13200 cm.4
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