

HIGHER TECHNOLOGICAL INSTITUTE

Department of Civil Engineering

Revision of [CT211 - Theory of Structures (3)]

Influence Lines

(1) Draw the influence lines for: Y_A , Y_E , M_A , Q_{A-left} , Y_B , Y_C , Q_n , M_n , Q_{B-left} , and M_B . Also, calculate the maximum and minimum values for Mn for D.L.=2 t/m and L.L = 3 t/m.

(2) Draw the influence lines for: normal, shear, and bending at sections M and N. Also find the influence lines of Q_{D-left}, M_{DE}, M_{DA}, M_{DC}, Q_{D-right}, N_{DA}, and Q_{DA}.

١

Deflection

(4) Draw the elastic lines for the shown beams.

(5)

Three Moment Equation Method

(6) Draw S.F.D and B.M.D for the shown beam.

۲

Virtual Work Method

(9) Find H_A , Y_c and Φ_B for the shown structure (EI=10000 t.m² and EA = 40000 t).

(10) Find the maximum distance between the two frames that points C and C' will not touch (EI=10000 t.m² and EA = 40000 t).

(11) Find Y_F and the relative displacement between A and E - (EA = 40000 t).

(12) Find Y_F for the shown trussed frame (EI=10000 t.m² and EA = 40000 t).

Good Luck

Dr. Mohammad Mohie Eldin