HIGHER TECHNOLOGICAL INSTITUTE

Department of Civil Engineering
 Revision of [CT211 - Theory of Structures (3)]

Influence Lines

(1) Draw the influence lines for: $Y_{A}, Y_{E}, M_{A}, Q_{A-l e f t}, Y_{B}, Y_{C}, Q_{n}, M_{n}, Q_{B-\text { eft }}$, and M_{B}. Also, calculate the maximum and minimum values for $M n$ for D.L. $=2 \mathrm{t} / \mathrm{m}$ and $\mathrm{L} . \mathrm{L}=3 \mathrm{t} / \mathrm{m}$.

(2) Draw the influence lines for: normal, shear, and bending at sections M and N. Also find the influence lines of $Q_{D-l e f t}, M_{D E}, M_{D A}, M_{D C}, Q_{D-r i g h t}, N_{D A}$, and $Q_{D A}$.

Deflection

(3) Draw the elastic lines for the shown beams.

(4)

Three Moment Equation Method

(5) Draw B.M.D for the shown frames.

(6)

Virtual Work Method

(7) Find H_{A}, Y_{c} and Φ_{B} for the shown structure $\left(E I=10000 \mathrm{t} . \mathrm{m}^{2}\right.$ and $\left.E A=40000 \mathrm{t}\right)$.

2 T/m'

(8) Find the maximum distance between the two frames that points C and C^{\prime} will not touch $\left(E I=10000 \mathrm{t} . \mathrm{m}^{2}\right.$ and $\left.\mathrm{EA}=40000 \mathrm{t}\right)$.

(9) Find Y_{F} for the shown trussed frame $\left(E I=10000 t . m^{2}\right.$ and $\left.E A=40000 t\right)$.

Dr. Mohammad Mohie Eldin

