CS 199 Computer Programming

Spring 2018
Lecture 2
Problem Solving

ALGORITHMS AND FLOWCHARTS

- A typical programming task can be divided into two phases:
- Problem solving phase
- produce an ordered sequence of steps that describe solution of problem
- this sequence of steps is called an algorithm

- Implementation phase

- implement the program in some programming language

Steps in Problem Solving

- First produce a general algorithm (one can use pseudocode)
- Refine the algorithm successively to get step by step detailed algorithm that is very close to a computer language.
- Pseudocode is an artificial and informal language that helps programmers develop algorithms. Pseudocode is very similar to everyday English.

Pseudocode \& Algorithm

- Example 1: Write an algorithm to determine a student's final grade and indicate whether it is passing or failing. The final grade is calculated as the average of four marks.

Pseudlocode:
Input a set of 4 marks
Calculate their average by summing and
dividing by 4
if average is below 50
Print "FAIL""
else
Print "PASS"

Detailed Algorithm

Step 1: Input M1,M2,M3,M4
Step 2: GRADE $\leftarrow(\mathrm{M} 1+\mathrm{M} 2+\mathrm{M} 3+\mathrm{M} 4) / 4$
Step 3: if (GRADE < 50) then

> Print "FAIL"
else

Flowchart

- A flowchart is a schematic representation of an algorithm or a process.
- A flowchart gives a step-by-step procedure for solution of a problem.

Basic Flowchart Shapes and Definitions

Used to connect one part of a flowchart to another.

Process or action.

ision point in a process or workflow.

Off Page Connector

Connector used to connect one page of a flowchart to another.

Terminal

- An oval flow chart shape indicates the start or end of the process
- Usually containing the word "Start" or "End".

Project/Task

- The Process Symbol represents any process, function, or action and is the most frequently used symbol in flowcharting
- Examples include
- Add 1
- Turn the motor on
- Turn the light off
- Rotate the part

Input/Output

- The Input/Output Symbol represents data that is available for input or resulting from processing (i.e. customer database records)
- Examples include
- Type in the weight
- Check the balance
- Time the operation

Connector

- The Connector Symbol represents the exit to, or entry from, another part of the same flow chart. It is usually used to break a flow line that will be continued elsewhere.

-The "A" connector indicates that the second flowchart segment begins where the first segment ends.

Decision

- The Decision Symbol is a junction where a decision must be made. A single entry may have any number of alternative solutions, but only one can be chosen
- Examples include
- Is this number larger than 10 ?
- Does the weight meet specifications?
- Has the count been reached?

Off Page Connector

- Off-page Connector Symbols are used to indicate the flow chart continues on another page. Often the page number is placed in the shape for easy reference Connector

Module

-The position of the module symbol indicates the point the module is executed.

- A separate flowchart can be constructed for the module.

Three Flowchart Structures

- Sequence
- Decision
- Repetition

Sequence Structure

- A series of actions are performed in sequence

Decision Structure

- A sequence of actions executed based on condition.

Repetition Structure

- A sequence of actions executed many times.

1 is added to variable x until $\mathrm{x}>\mathrm{y}$

Example 1

- Write an algorithm and draw a flowchart that will read the two sides of a rectangle and calculate its area.
- Pseudocode
- Input the width (W) and Length (L) of a rectangle
- Calculate the area (A) by multiplying L with W
-Print A

Example 1(cont.)

- Algorithm
-Step 1: Input W,L
-Step 2: $\mathrm{A} \leftarrow \mathrm{L}$ x W
-Step 3: Print A

Example 2

- Write an algorithm and draw a flowchart that will calculate the roots of a quadratic equation

$$
a x^{2}+b x+c=0
$$

- Hint: $\mathrm{d}=\operatorname{sqrt}\left(b^{2}-4 a c\right)$, and the roots are: $\mathrm{x} 1=(-\mathrm{b}+\mathrm{d}) / 2 \mathrm{a}$ and $\mathrm{x} 2=(-\mathrm{b}-\mathrm{d}) / 2 \mathrm{a}$

Example 2 (cont.)

- Algorithm:
-Step 1: Input a, b, c
- Step 2: $\mathrm{d} \leftarrow \operatorname{sqrt}(b \times b-4 \times a \times c)$
- Step 3: $\quad \mathrm{x} 1 \leftarrow(-\mathrm{b}+\mathrm{d}) /(2 \mathrm{xa})$
- Step 4: $\quad \mathrm{x} 2 \leftarrow(-\mathrm{b}-\mathrm{d}) /(2 \mathrm{xa})$
-Step 5: Print x1, x2

Example 3

- Write an algorithm to determine a student' s final grade and indicate whether it is passing or failing. The final grade is calculated as the average of four marks.

Example 3 (cont.)

- Step 1: Input M1,M2,M3,M4
- Step 2: GRADE \leftarrow (M1+M2+M3+M4)/4
- Step 3: if (GRADE <50) then Print
"FAIL"
else

Print

"PASS"
endif

Example 4

- Count from 1 to 100 by odd numbers.
- Before attempting to draw the flowchart, determine what you want the output to be.
- What is the first block (always)?

Step 1

- The output will be $1,3,5,7,9 \ldots . .99$.
- The Start block is always first.

START

Step 2

The program begins with the number 1.

Step 3

The number 2 will be added to 1 so that the program will continue to count by odd numbers.

Step 4

Add a decision block so that the program will continue counting until the value is greater than 100 .

Step 5

Example 4

- We want to create a flowchart that prints out the word "Honour" if the number input is 70 , if the number is less than 40 print out the word "Fail", otherwise print out the word "Pass".

Example 4 (cont.)

Example 5

- Express an algorithm to get two numbers from the user (dividend and divisor), testing to make sure that the divisor number is not zero, and displaying their quotient using a flowchart.

Example 5 (cont.)

- Step 1 - Declare variables - dividend, divisor, quotient
- Step 2 - Prompt user to get dividend
- Step 3 - Store values in dividend variable
- Step 4 - Prompt user to get divisor
- Step 5 - Store value in divisor variable
- Step 6 - Display dividend and divisor
- Step 7 - Loop

Selection: If divisor is equal to zero
Display error message, "divisor must be non-zero" and
go back to step 4

- \quad Step 8 - Calculate quotient as dividend/divisor
- \quad Step 9 - Display quotient

Example 6

- Write and algorithm and draw a flowchart to
a) read an employee name (NAME), overtime hours worked (OVERTIME), hours absent (ABSENT) and
b) determine the bonus payment (PAYMENT).

Bonus Schedule	
OVERTIME $-(2 / 3)^{*}$ ABSENT	Bonus Paid
>40 hours	$\$ 50$
>30 but ≤ 40 hours	$\$ 40$
>20 but ≤ 30 hours	$\$ 30$
>10 but ≤ 20 hours	$\$ 20$
≤ 10 hours	$\$ 10$

Feedback request

- Please mail questions and constructive comments to marwa.elmenyawi@bhit.bu.edu.eg
- Your feedback will be most appreciated
- On style, contents, detail, examples, clarity, conceptual problems, exercises, missing information, depth, etc.

The next lecture

- Will talk about how to write your first program in

Fortran.

