
Spring 2018

Lecture 6

Loops

CS199 Computer programming

Objectives

In this chapter, you will:

• Learn about repetition (looping) control structures

• Explore how to construct and use deterministic and non-deterministic loops

• Examine Exit and cycle statements

• Discover how to form and use nested control structures

Loops (Iterative Constructs)

• Many application require certain operations to be carried out more than once.

Such situations require repetition in control flow.

• Loops allow a code segment to be executed many times.

• Loop construct in FORTRAN

–Deterministic do loop – repeat a fixed number of times

–Non-deterministic do loops – repeat until some criterion is met.

Deterministic do loop
• Deterministic do loop is used when the number of times to be repeated is fixed/known

• syntax
do index = istart, iend[, incr]

statement block
end do

– The index must be a named scalar integer variable
– istart, iend, incr can be constants, variables, or expression of integer.
– If incr is not specified, incr = 1.
– incr can be positive or negative

• semantics
– execute istart
– evaluate expression, if true: iterate
– iteration:

• execute body
• execute incr
• repeat expression evaluation

• example
do i= 1, 5,2

x=x+1
End do 4

expression

body

true

false

Istart

incr

X=1
X=2
X=3

Loop iterates
3 times as
i=1 , 3, 5

do index = i s t a r t , i end [, i n c r]
statement block

end do

. t rue.

Statementblock

. f a l s e .

index = istart

index ≤ iend

index = index +incr

. t r ue.

Statementblock

. f a lse .

index = istart

index ≥ iend

index = index -incr

i n c r > 0 i n c r < 0

Deterministic do loop

Examples Using the Deterministic do Structure

–Vary control variable from 1 to 30 in increments of 2
DO i = 1, 30, 2
... ! i takes the values 1,3,5,7,...,29 , 15 iterations
END DO

–Vary control variable from 30 to 1 in decrements of -2
DO j = 30, 1, -2
... ! j takes the values 30,28,26,...,2 , 15 iterations
END DO

–There is no iterations
DO k = 30, 1, 2
... ! 0 iterations , loop skipped
END DO

–Vary control variable from 1 to 30 in steps of 1
DO l = 1, 30
... ! l takes the values 1,2,3,...,30 , 30 iterations
END DO

Example 1
• Print the integer numbers 1 to 10 on screen using for loop statement

7

counter = 1

true

false

c = 1

c <= 10 C=c+1

Establish
initial value of
control
variable

Determine if
final value of
control variable
has been
reached

Body of loop
(this may be
many
statements)

Increment
the control
variable

Output c

Program counter
! function main begins program execution
integer :: c
! Initialization, expression and incrementing
! are all included in the Do structure header.

Do c =1 , 10 , 1
write (*,*) c

End do
end

Factorial example

integer :: no, f=1, n

write (*,*) "Enter positive integer:"
read (*,*) no

do n=1,no,1

f=f*n

end do

write(*,*) "The factorial of “, no, " is " , f

end

n! (n factorial) is defined as the product of all the integers from 1 to n.

n! = 1*2*3*...*n

Example: 5! = 1 x 2 x 3 x 4 x 5 = 120

n<=num

fac= fac * n

true

false

fac=1,n=1

n=n+1

Input
num

Non-deterministic do loops
• repeat until some criterion is met

• There are two constructs
– Using if (….) exit

– Using do while (…)

• Syntax

• semantics
– if expression is true then execute body

• body is either a single statement or a block
• iteration: single execution of body

– iterate until expression evaluates to false
–Avoid Infinite loop by including statements in loop body that assure exit condition is eventually false

9

if (….) exit do while (…)
do

.

i f (l og i ca l_express ion) e x i t
.

end do

do whi le (log ica l_exp ress ion)
.

end do

do
.

i f (log ical_expression) e x i t
.

end do

do whi le (logical_express ion)
.

end do

logical
expression

. f a l se.

statement
block

. t r u e .

statement
block

. t r u e .

logical
expression

statement
block

. f a l se .

WHILE LOOP could result in infinitelooping.

Non-deterministic do loops

exit and cycle Statements

• The exit and cycle statements alter the flow of control

• exit statement

–Causes immediate exit from loop

–Program execution continues with first statement after structure

• cycle statement

–Skips remainder of loop body

–Proceeds with next iteration of loop

11

• EXIT statement

do i = 1 , 5
i f (i == 3) e x i t
w r i t e (* , *) i

end do

• CYCLE statement

do i = 1 , 5
i f (i == 3) cycle
w r i t e (* , *) i

end do

the output will be1, 2, 4, 5

the output will be1, 2

Cycle vs. Exit

! print 1 to 100 using a do loop using if

Integer :: c=1 ! Declaration and
!initialization of control variable c

do

if (c> 100) exit ! while c is <=100

write (*,*) c

c=c+1 !add one to the c every
!time the loop repeats.

End do ! when c is >100 then the loop will terminate

End

Example 3

counter = 1

true

false

c = 1

c <= 100 C=c+1

Establish initial
value of control
variable

Determine if final
value of control
variable has been
reached

Body of loop
(this may be many
statements)

Increment
the control
variable

Output c

! print 1 to 100 using a while loop

Integer :: c=1 ! Declaration and
!initialization of control variable c

do while (c<=100) ! while c <=100
write (*,*) c

c=c+1 !add one to the c every
!time the loop repeats.

End do ! when c is >100 then the loop will terminate

End

Example 3

counter = 1

true

false

c = 1

c <= 100 C=c+1

Establish initial
value of control
variable

Determine if final
value of control
variable has been
reached

Body of loop
(this may be many
statements)

Increment
the control
variable

Output c

Example 4

Integer :: v =0, m =0

do while(v /= -1)

Write (*,*) “Enter a positive integer”, “(-1 to stop):”
read (*,*) v

if(v > m) then
m= v;

end if

End do

Write (*,*) "The maximum value found is " , m

end

v!=-1

Input v

true

false

v=0,m=0

m=v

v > m
false

true

• Find the maximum positive number

Example 6
n! (n factorial) is defined as the product of all the integers from 1 to n.

n! = 1*2*3*...*n

Example: 5! = 1 x 2 x 3 x 4 x 5 = 120

n<=num

fac= fac * n

true

false

fac=1,n=1

n=n+1

Integer :: num, fac=1, n=1
Write (*,*) "Enter a positive integer:"
read (*,*) num
Do
 if (n > num) exit

fac = fac * n
n =n+1

End do

Write (*,*) "The factorial of " , num , " is “,fac

end

Choosing the Right Looping Structure

• All loops have their place in FORTRAN

–If you know or can determine in advance the number of repetitions needed,

the deterministic loop is the correct choice

–If you do not know and cannot determine in advance the number of

repetitions needed, and it could be zero, use a non- deterministic loop

17

Nesting of Iterative Constructs
• iterative constructs can be nested: one iterative construct may be inside the body of another

• When working with nested loops, the outer loop changes only after the inner loop is completely finished

• nesting may be more than two loops deep

• example:

18

• Nesting loops (loopwithin loop)

do i = 1 , 5
do j = 1 , 4

w r i t e (* , *) i , j
end do

end do

Output

1 1
1 2
1 3
1 4
2 1
2 2

• Named loops

oute r : do i = 1 , 5
inner : do j = 1 , 4

w r i t e (* , *) i , j
end do inner

end do outer

loops result in compilation errors

do i = 1 , 3
do j = 1 , 4

w r i t e (* , *) i , j
end do

oute r : do i = 1 , 3
inner : do j = 1 , 4

w r i t e (* , *) i , j
end do outer

oute r : do i = 1 , 3
inner : do j = 1 , 4

w r i t e (* , *) i , j
end do outer

end do inner

Missing end do

Missing end do inner

end do for inner and
outer are interchanged

Using CYCLE and EXIT in nested loops:
program test_cycle_1
in teger : : i , j , product
do i = 1 , 2

do j = 1 , 3
i f (j==2) cycle
product = i * j
w r i t e (* , *) i , ' * ' , j , ' = ' , product

end do
end do
end program test_cycle_1

1 * 1 = 1
1 * 3 = 3
2 * 1 = 2
2 * 3 = 6

Output:

1 * 1 = 1
2 * 1 = 2

Output:
program test_cycle_2
in teger : : i , j , product
do i = 1 , 2

do j = 1 , 3
i f (j==2) e x i t
product = i * j
w r i t e (* , *) i , ' * ' , j , ' = ' , product

end do
end do
end program test_cycle_1

Infinite Loops

• Loops that never stop are infinite loops

• The loop body should contain a line that will eventually cause the expression to
become false

• Example: Print the odd numbers less than 12
integer :: x = 1

do while (x /= 12)

write (*,*) x
x = x + 2

end do

