Higher Technological Institute Civil Engineering Department Dr. Mohamed Reda
(CT 231) Highway \& Airport Engineering
Spring (2019)
Assignment No. (2)
Flexible Pavement Design

HIGHER INSTITUTE

Question 1

Shown below is a load-meter study on axle weight load distribution at a particular highway. The survey involved a total of 1500 trucks. Determine the truck factor for the information given below:

Single axle	
Axle load (klps)	No. of axles
2	1200
6	800
10	120
14	45
18	145
22	20
26	2
Tandem axles	
14	4
18	25
22	85
26	90
30	120
34	90
38	30

Question (2)

Calculate the number of repetitions of the standard axles given the following data:
\square Average daily traffic $=20000 \mathrm{vpd}$
\square Directional Distribution $=60 / 40$
\square Lane distribution factor $=0.8$
\square Truck percent $=25 \%$
\square Rate of traffic increase $=2.5 \%$
\square Design analysis period $=20$ years
\square Truck factor $=4$

Question (3)

A pavement cross section was estimated to comprise the following:-

- The AC course having a thickness of 6 inch and a modulus of elasticity of 250000 psi
- The base course is a crushed stone having a thickness of 12 inch and a CBR value of 80
- The bottom layer is a sandy gravel sub base with a thickness of 16 inch and a CBR value of 30

Evaluate the above pavement section, whether it is under designed or over designed. The actual input parameters needed for design are:-
If you find out that pavement is over designed, estimate how much money you could save for a length of 1 km and a width of 1 lane (3.5 m). If you find out that the pavement is under designed, estimate how much money you need (per 1 km per lane) in order to assure that no failure will occur during the entire pavement life. In estimating the cost, the following unit rate price can be assumed:

- Cost of AC for 1 inch thickness $=12$ E.P $/ \mathrm{m}^{\wedge} 2$
- Cost of Base Course for 1 inch thickness $=2.5$ E.P / m^2
- Cost of Sub base Course for 1 inch thickness $=0.75$ E.P $/ \mathrm{m}^{\wedge} 2$

